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Abstract

Knowledge reasoning is a critical task in
information fusion systems, and its core step is
reasoning missing information from existing facts to
improve the knowledge graphs. Embedding-based
reasoning methods and path-based reasoning
methods are two mainstream knowledge reasoning
methods. Embedding-based reasoning methods
enable fast and direct reasoning but are limited to
simple relationships between entities and exhibit
poor performance in reasoning complex logical
relationships. Path-based reasoning methods
perform better in complex reasoning tasks, but
suffer from high computational complexity, a large
number of model parameters, and low reasoning
efficiency. To address the aforementioned issues,
this paper introduces a knowledge reasoning model
called Quantum-Inspired Reinforcement Learning
(QIRL). QIRL leverages quantum reinforcement
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learning to train a strategy network via a quantum
circuit, aiming to generate and optimize reasoning
paths. Quantum circuit achieves complex nonlinear
operations through limited quantum reasoning
paths gate operations, reducing computational
complexity.  In addition, this article utilizes
the quantum entanglement property to encode
high-dimensional data, reducing the number of
model training parameters. This article evaluates
the QIRL method on entity prediction task and
proves that the QIRL method can effectively reduce
the number of model training parameters.

Keywords: knowledge graph, knowledge reasoning,
reinforcement learning, quantum circuit.

1 Introduction

Knowledge Graphs (KGs) serve as a foundational
tool for information fusion, providing a structured
representation of knowledge that facilitates data
integration and semantic modeling. However, during
the construction of KGs, the occurrence of missing
facts, resulting from incomplete, inconsistent, or
dynamically evolving data, limits their practical
applicability. ~To address this issue, knowledge
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reasoning, as a core task in knowledge graph research,
aims to complete missing facts based on existing
ones. Embedded-based reasoning method is one of
the mainstream [1]. This method captures semantic
information [2] and reasoning out missing facts by
learning low dimensional vector representations of
entities and relationships in KGs and utilizing the
relative positions and geometric structures between
these embedded vectors. Embedding-based reasoning
methods are computationally simple, efficient, and
suitable for various applications. However, their
representational capacity is limited, making it
challenging to reason about complex relationships
between entities. For complex reasoning tasks,
path-based reasoning methods can effectively capture
and model multi-level relationship structures and
search for multi-hop paths between entities in the
KG, using structural information to reason about
missing facts and complete the KG. The path-based
reasoning method can effectively handle complex
relational reasoning tasks [3], but the path search
and matching process usually requires traversing a
large number of graph structures, resulting in high
computational complexity and significantly increasing
the consumption of computing resources. Reducing
the number of model parameters can decrease
computational complexity, enhance reasoning
efficiency, and reduce computational costs.

Traditional methods, while reducing the number of
parameters to some extent, still face a trade-off between
model performance and computational efficiency.
As an emerging computing paradigm, quantum
circuit, with their unique quantum advantages,
can significantly reduce the number of model
training parameters while maintaining or improving
model performance, thereby further optimizing
computational efficiency and reasoning effectiveness.
Arute et al. [7] used a quantum processor called
Sycamore to perform an extremely difficult random
number generation task and compared it with
traditional supercomputers. The experimental results
indicate that the time required for Sycamore to
complete the task is much shorter than that of
classical computers, demonstrating the computational
advantage of quantum computers over traditional
computers in specific tasks. With the deepening of
quantum computing research, variational quantum
circuit (VQC) have emerged [8]. This method
draws on the principles and structures of artificial
neural networks, enabling quantum computing to
be effectively applied to machine learning tasks.

Chen et al. [10] demonstrated that the parameter
space complexity of VQC is O(N), while that of the
traditional neural network DON is O(N?). For KGs,
which involve large state and action spaces, VQC can
greatly reduce model parameters and computational
complexity.

In order to address the challenges of computational
complexity and resource consumption in
knowledge reasoning models, this paper proposes
quantum-inspired reinforcement learning (QIRL),
which trains a reinforcement learning strategy
network based on quantum circuit and searches
for reasoning paths in KGs. Specifically, this paper
proposes an embedding-based approach to map the
state information of the knowledge graph (KG) into a
continuous vector space. This representation is then
quantum encoded and input into a strategy network
based on quantum circuits for training. Ultimately,
the network outputs the probability distribution
for the next action. The strategy network based on
quantum circuit gradually expands the reasoning path
until all reasoning paths in the KG are found. QIRL
utilizes the parallelism and entanglement properties
of quantum computing, greatly reducing the number
of model training parameters, lowering computational
complexity, and reducing computational resource
consumption. The main contributions of this paper
are as follows:

1. This article proposes a knowledge reasoning
model based on quantum circuit training
reinforcement learning strategy network for the
tirst time, which uses known facts to supervise
the training of quantum circuit, update its
parameters, and perform knowledge reasoning;

2. This article utilizes the parallelism and
entanglement properties of quantum computing
to reduce computational complexity, The
experimental results show that the QIRL method
proposed in this paper can significantly reduce
the number of model training parameters.

2 Related Work
2.1 Embedded-Based Reasoning Methods

The embedding-based reasoning methods map
entities and relationships in KGs to a low dimensional
vector space, allowing their semantic and structural
information to be expressed in the form of geometric
relationships, thereby efficiently handling reasoning
tasks in large-scale KGs. Early methods such as TransE
[11], TransH [12] and DistIMult [13] focused on
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studying geometric relationships such as translation,
projection, and linear transformation between
embedded vectors of entities and relationships,
providing efficient and semantic knowledge
representation for knowledge reasoning. Lu et al. [14]
proposed the DensE method, which decomposes each
relationship into rotation and scaling operators in
three-dimensional Euclidean space, which can better
represent composite relationships. Pavlovic et al. [15]
proposed the ExpressivE method, which uses the
spatial relationships of super parallel quadrilaterals
to represent the semantic structural information
between entities and relationships, providing intuitive
geometric explanations for knowledge reasoning tasks.
Although embedding based reasoning methods have
shown good performance in large-scale KGs reasoning
tasks, they are difficult to handle relationships with
multi-level semantics or nonlinear structures, and have
weak modeling capabilities for complex relationships.

2.2 Path-Based Reasoning Methods

The path-based reasoning methods utilizes the
powerful expressive power of neural networks to
optimize the reasoning process, which can effectively
handle reasoning tasks in large-scale KGs. Dettmers et
al. [16] proposed a multi-layer convolutional network
mode called ConvE for link prediction, which captures
the relationship information between entities through
convolutional networks and effectively reasons over
large-scale KGs. Yang et al. [17] proposed the hyper
relation aware multi-view model HyRel, which learns
the globally transferable structure of a graph to reason
about unseen graphs, offering high flexibility and
usability. Xiong et al. [18] proposed a reinforcement
learning framework for learning multi-hop relational
paths, which effectively handles complex reasoning
tasks with ambiguous answers and scales to large
KGs. The path-based reasoning methods perform
well in large-scale KG reasoning, but the model
requires a large number of training parameters, high
computational complexity, and demand significant
computing and storage resources.

2.3 Applications of Quantum Computing

The superposition and entanglement properties of
quantum computing give it unique advantages in
solving certain computational tasks that traditional
computers do not have. Chen et al. [10]
explored the potential of quantum computing to
enhance reinforcement learning and demonstrated
the potential of quantum algorithms in improving
time and space complexity in simple environments.
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Chen et al [4] proposed the asynchronous
training of advantage actor-critic variational quantum
policies, which reduces the training time of quantum
reinforcement learning. As the application of quantum
computing in reinforcement learning progresses,
quantum reinforcement learning has been extensively
explored and applied across various fields. Kim et
al. [5] integrated quantum reinforcement learning
into reusable rocket control systems, enhancing
both computational efficiency and model stability.
Ansere et al. [6] proposed a Quantum-empowered
Deep Reinforcement Learning (Qe-DRL) approach
to enhance computational learning speed and task
processing efficiency for IoI' devices under quantum
uncertainty and time-varying channel conditions. In
addition, quantum reinforcement learning is widely
used in fields such as biochemistry and medicine,
and has shown good performance. However, the
above application scenarios are generally relatively
simple, usually requiring only a limited number
of qubits and small state and action spaces. KGs
typically contain large states and action spaces. To
reduce the computational complexity of reasoning
models in large-scale KGs, this paper proposes a
quantum reinforcement learning based knowledge
reasoning model QIRL, which greatly reduces the
training parameters of the model by utilizing quantum
advantages. The performance of the proposed model
is validated on universal datasets. In contrast to
emerging LLM-based reasoning methods [9], our
approach emphasizes computational efficiency and
parameter reduction via quantum-inspired techniques.

3 Problem Description

A KG contains a large amount of entity and relational
data. Given a graph G = {E, ¢, R}, E represents the
set of entities and R represents the set of relationships
between entities. € = {(h;,r;,t;)|hi,t; € E,r; € R}
is the set of triplets in a KG, each triplet consisting
of a head entity h;, a relationship 7;, and a tail
entity ¢;. Due to incomplete data sources and
insufficient information extraction, KGs often have
missing elements, which can be filled in through
knowledge reasoning. According to the type of
missing elements, knowledge reasoning tasks can be
divided into head reasoning (?,r;,t;), tail reasoning
(hi,r;,?) and relational reasoning (h;,?,t;), among
which ? indicates missing elements. The path-based
knowledge reasoning methods reason about missing
facts by searching for paths between entities. As
the number of entities and relationships in the KG
increases, the number of possible reasoning paths
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increases exponentially, which makes a comprehensive
analysis of these paths computationally complex.
Therefore, how to reduce computational complexity
while ensuring reasoning accuracy has become a key
challenge in current research.

To address the above issues, this paper proposes a
quantum reinforcement learning-based knowledge
reasoning method, QIRL, which utilizes quantum
circuits to train the strategy network and reduce the
computational complexity of the training process.
The QIRL method consists of two main components:
the external environment and the quantum strategy
network. The quantum strategy network is primarily
composed of quantum circuits, which in turn
consist of quantum bits, quantum gates, and
measurement operations [5]. Quantum bits are the
fundamental units used to construct quantum circuits,
while quantum gates serve as the basic units for
manipulating quantum bits. Quantum gates perform
linear transformations on the states of quantum
bits, create entanglement between them, and enable
parallelism in quantum computation. This allows
quantum circuits to simultaneously process data from
multiple quantum bits, significantly reducing the
number of model training parameters and lowering
computational complexity. After the quantum circuit
processes the data of n quantum bits in parallel, a
measurement is performed on these n quantum bits to
obtain the output of the quantum strategy network.
The quantum strategy network generates the next
action based on the current external environment state
and continuously updates its parameters until the
reasoning process is completed. This paper mainly
focuses on tail reasoning tasks, while the other two
types of reasoning tasks can be similarly transformed
into the form of tail reasoning tasks.

4 QIRL Model

In this section, an overview of the proposed QIRL
method is first introduced. The QIRL method trains
a reinforcement learning strategy network based
on quantum circuit and continuously updates the
quantum circuit parameters according to the state of
the agent. Afterwards, the training and reasoning
process of the QIRL method were described in detail.

4.1 Modeling

The QIRL method updates the parameters of the
quantum policy network by continuously interacting
with the environment to find the optimal reasoning
paths. In this paper, the environment is modeled as a

Markov Decision Process (MDP) and the interaction
dynamics between the agent and the KG are specified.
MDP can be represented by tuple (S, R, P, R’), where
S = {s1,82,---,sp} represents the continuous
state space of the KG as input to the quantum
policy network. R = {ry,re,---,r,} represents
the set of relationships in the KG, that is, the set
of all next optional actions output by the quantum
policy network. P (S;11 = s°|S; = s, R; = r) is a state
transition probability function that represents the
probability of the QIRL policy network transitioning
from state s to state s’ upon selecting action r. R’ (s, )
is the reward function for each pair (s, r), designed to
encourage the agent to learn the optimal strategy. The
specific settings of the QIRL method are as follows:

e Actions: The actions of the quantum policy
network can be represented by the relationship
r in the KG. For the entity pair (h;,t;), starting
from the head entity h;, the agent selects the
action with the highest probability as the next
action r; based on the output action probability
distribution of the quantum policy network, to
extend the path until reaching the real tail entity ¢;;
To ensure the consistency of the output dimension
of the strategy network, this paper defines the
action space as all relationships and their inverse
relationships in the KG, and the dimension of
the action space is consistent with the number
of quantum bits in the quantum circuit.

e States: KGs contain a large number of entities and
relationships, which are discrete symbols, while
policy network training needs to be conducted
in a continuous space. In order for the policy
network to better capture semantic information, it
isnecessary to transform entities and relationships
into continuous vectors. This model employs
the translation-based embedding method TransE,
which maps the discrete symbols of entities
and relationships into a continuous vector space,
capturing the agent’s position in the KG and
enabling transitions from the current entity to the
next via the selected relationship. The state of the
agent in step i can be represented by the following
vector:

(1)

where e; represents the embedding vector of

the current entity, e; represents the embedding
vector of the tail entity, and e; — e; represents the
distance between the target entity and the current
entity in the vector space. After the embedding
vectors of entities and relationships are trained,

si = (ei, er — €;)
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they still need to undergo quantum encoding
before being input into the quantum circuit of
the strategy function for processing. Quantum
amplitude coding is an efficient mapping method
from classical data to quantum states where
n qubits can encode states with a dimension
of 2", achieving compressed representation of
high-dimensional input data. This paper uses

quantum amplitude coding to encode states s;.

The state s; is normalized to s;, where || s;|| denotes

the norm of s;.
Si

(2)

S =

sl
assuming that the dimension of s; is 2", it can be
encoded into an n-qubit quantum state expressed
as:

lo) =8i0-100---0) +81-100---1) +--- (3)
+ Sjon_1 - |11---1)

where [00---0),]00---1),--- represent the
possible states of the n-qubit system.

Rewards: Select actions one by one from the
head entity until reaching the real tail entity, and
this action sequence is the reasoning path of
the quantum policy network. Due to the large
action space available to agents, there are far
more incorrect action decision sequences than
correct ones, and the number of incorrect decision
sequences increases exponentially with the length
of the reasoning path. To encourage agents to find
the correct reasoning path, this paper defines the
reward function of the policy network as:

/ / / /
total = "GLOBAL T TEFFICIENCY T TDIVERSITY
(4)
where ;g4 represents the overall reward,
which can be expressed by the following formula:

+1,ifthepathreachest;
TGLOBAL' = (5)

—1,otherwise

if the agent reaches the real tail entity after
selecting a series of actions, it will receive a
positive reward +1; otherwise, it will receive
a negative reward -1. The length of the
reasoning path also has a significant impact on the
reasoning results. As the path length increases,
the accuracy and reliability of the information
decrease, accompanied by cumulative errors.
Therefore, shorter reasoning paths are generally
more reliable than longer ones. This paper

reduces path length and improves reasoning
efficiency by limiting the interaction length
between the agent and the environment. The
definition of the efficiency reward function is as
follows:

1

length (p) (6)

TEFFICIENCY' =
where P : rirg---r, represents the reasoning
paths. The agent search for reasoning paths
by learning normal samples, which have similar
representations in vector space. This makes
the agent more inclined to search for reasoning
paths with similar semantics, which often contain
redundant information. To enable the agent to
find different paths as much as possible, this
paper defines the path diversity reward function
as follows:
|F|

1
TDIVERSITY' = —m Z cos (p, pi) (7)
i=1

wherep = Z§:1 r; represents the path embedding
of the reasoning path P, and F' represents the total
number of reasoning paths. The strategy network
updates the parameters of quantum circuit by
constantly interacting with the environment.

e Policy network: This paper trains a quantum
policy function 7 (r |£ (s;) ;w) = p (r|s;; w) based
on the quantum circuit, where w represents
the parameters of the quantum circuit, £ (s;)
represents the quantum amplitude encoding of
the state s;, and 7 (r £ (s;);w) represents the
probability of selecting the action r in state s;
when the parameters of the quantum circuit are
w. The quantum strategy network constantly
interacts with the external environment, updating
the parameters of the quantum circuit under
the constraint of the reward function to find the
optimal reasoning paths.

When training the policy network using the QIRL
method, the current environmental state s is first
input into the quantum policy network and quantum
encoded to initialize the input state of the quantum
circuit. After quantum computing, measure the
probability distribution of actions, select the action
with the highest probability as the next action r, and
update the environmental state to s’. The reward
function calculates the reward value R’ based on the
current environmental state and inputs it together
with ¢’ into the optimizer of the quantum strategy
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network to update the quantum circuit parameters w.
After training, the quantum strategy network generates
reasoning paths as logical rules for entity reasoning to
reason about missing entities. The flow of the QIRL
method is illustrated in Figure 1.

4.2 Strategy Network Training

For each entity pair (h;,;), a random breadth first
search (BFS) is used to find all paths between the entity
pairs. This paper introduces a random mechanism
in the BFS algorithm, which randomly selects an
intermediate node instead of directly searching for
paths between the head entity h; and tail entity ¢;. Then
perform two BFS between (h;, inter;) and (inter;, t;) to
search for the correct paths faster and improve the
convergence speed of the model. For entity pairs
(h,t), randomly select the inter mediate entity inter
and perform BFS between (h,inter) and (inter,t)
to find paths. Entities are usually associated with
multiple different relationships. Assuming that the
head entity h connected to the new entity e; through
the relationship r, and then e; connected to the entity
inter through the relationship 77, a reasoning path
r1 — 79 is obtained. inter connected to the new
entity e through relationship 73, and e is connected
to the tail entity ¢ through relationship r4. Therefore,
the reasoning path is r3 — r4. Combining the two
reasoning paths together, the final reasoning path
between (h,t)is P =1y — ro — 13 — 74.

This paper conducts supervised training on the
quantum policy network of QIRL method based on the
paths between entity pairs searched by random BFS
method. The quantum strategy network maximizes
the expected cumulative reward by continuously
updating the parameters of the quantum circuit w.

The expected cumulative reward J (w) is expressed
as follows:

J(w) =Y "w(rl¢(si);w) R,

i reR

(8)

where R, represents the reward value obtained by
selecting action r; in state s;. For each supervised path,
the agent receives a reward of +1 for each successful
search and updates the quantum circuit parameters
using the approximate gradient of the Monte Carlo
strategy gradient:

Vid (w) = w(r|€(si);w) Vi logm (r[€ (si);w)
i reA
)
= VleogW(r =7 |€(s;);w)

where r; belongs to path P, which represents the action
with the highest probability of the quantum circuit
output in step .

In the pretraining process of the quantum strategy
network mentioned above, the reasoning paths
obtained often contain a large amount of redundant
information and similar paths. To improve reasoning
efficiency, this paper retrains the quantum policy
network using a reward function to find a more
efficient reasoning path controlled by the reward
function. For each entity pair (h;,¢;), the agent selects
an action from the head entity h; based on the output
value of the quantum policy function = (7 |£ (s;) ;w)
to expand the reasoning paths. If the selected action
cannot connect to any entity, the agent receives a
negative reward and remains in its original state. Since
agents follow the quantum policy function to extend
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the reasoning paths, they will not get stuck due to
repeating incorrect steps. This paper improves training
efficiency by limiting the maximum length of the
reasoning paths. If the agent finds the correct tail entity
t; within the maximum path length, a new reasoning
pathis generated. Conversely, if the agent fails to locate
the correct tail entity ¢; within the constrained path
length, the current training iteration is terminated. The
gradient function of the quantum strategy network
during the retraining process is as follows:

Vwd (w) = Vu Zlogﬂ- (T =T |£ (Sl) ;’UJ) ;iotal
Z (10)

The retraining process of the model is shown in
Algorithm 1, where w is the parameters of the quantum
circuit, £(s;) is the quantum amplitude encoding of the
input state s;, and M,eg represents the set of negative
steps.

4.3 Entity Reasoning

Entity reasoning refers to reasoning about missing
entity information from known entities and their
relationships through the relationships or attributes
between entities in a KG. Due to the large number
of complex relationships between entities in KGs,
conducting path searches one by one will result in high
time costs. The bidirectional path constrained search
algorithm [18] is an efficient path search algorithm that
can simultaneously search for paths from both positive
and negative directions, significantly reducing the
number of search paths. Therefore, this paper adopts
a bidirectional path constrained search algorithm to
search for paths between entity pairs, significantly
reducing the search space and improving the efficiency
of path search.

For an entity pair (h, t), the reasoning path P’ trained
by the QIRL method is used as a logical formula,
starting from the head entity h and tail entity ¢
respectively, and gradually expanding the reasoning
paths through a bidirectional path constraint search
algorithm. If the intersection of the path entities in
both directions of the bidirectional path constraint
search algorithm is not empty, the true tail entity can
be successfully found based on the reasoning path
P'. Otherwise, the tail entity cannot be successfully
reasoned.

Assuming there is a reasoning path P = r; —
ro, perform bidirectional path constraint search on
entity pair (h,t). Starting from the head entity 7 and
connecting to the entity e through relationship 71, the

150

Algorithm 1: Retraining the policy function

Data: w

for episode < N do

Initialize state vector s; < sg

Initialize episode length steps < 0
encode s; with Amplitude Encoding &(s;)

while steps < max length do
Probability distribution of action

e~ m(r(€(si);
Observe reward I}, next state {(s(i + 1));
if R, = —1 then

| Save < {(s;),r > to Myeg
end

if success or steps=max length then
| then Break

end

end
Increase steps
Update w using

9o Vi Y logm(r=ri[€(si);w) (1)

Mneg

If success then

Riotal <~ \rgroBar + NeTEFFICIENCY
+ A3TDIVERSITY

Update w using

g X Vuw Zlogﬂ- (T =T ’f (SZ) ;’LU) Réotal

If reach ¢; then
reasoning Path P’ + ryry---71;

forward entity collection is left = {e}. At this point,
if the length of the forward entity set left is 1 and
the length of the reverse entity set right is 0, the next
step is to expand right. Starting from the tail entity
t and connecting to the entity e through relationship
ro, right = {e}, at this point, the intersection of le ft
and right is not empty, the tail entity is successfully
reasoned out.

5 Comparison of Model

Parameters

and Analysis

Quantum circuit is mainly composed of three parts:
quantum bits, quantum gates, and measurements.
Quantum bits exhibit unique quantum advantages
compared to classical bits due to their properties of
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superposition states. Quantum amplitude coding
is an efficient method for mapping classical data to
quantum states. It encodes states with 2"« dimensions
into amplitude values of N, quantum bits, achieving
compressed representation of high-dimensional input
data. The number of quantum bits in a quantum
circuit depends on the dimensions of the state and
action space of the KG. Assuming that the state space
dimension is dim, and the action space dimension is
dim,, the number of quantum bits N, needs to satisfy:

N, .

o an

Ny > dim,
Quantum gate is the fundamental unit that operates
on qubits, achieving entangled states between qubits
by linearly transforming their states, and establishing
complex connections between multiple qubits. CNOT
gates are commonly used to generate entangled
states between quantum bits, achieving parallelism
in quantum computing. After passing through the
CNOT gate, the quantum bits of the input circuit are
rotated through the Rot gate to achieve precise control
over the state of the quantum bits. The z, y, z Rot gate
in quantum circuit manipulates a three-dimensional
weight vector (W,,W,,W.) to achieve rotation of
quantum bits in three dimensions. Therefore, the
parameter number of each layer of the Rot gate in
quantum circuit is:

3 x N, (12)
if the number of layers in a quantum circuit is L, the
parameter number of the entire quantum circuit’s Rot
gate, denoted as Ng,is:
Nr =3 x Ny x L (13)
for each quantum circuit, if a bias vector is set as B,
the parameter number of the bias term Np is:
Np = N, (14)
the parameter number of the entire quantum circuit
N, can be expressed as:

N = Ng+Np = 3xNyxLy+N, = (3L, + 1) N, (15)

DeepPath [18] is trained on a reinforcement learning
network, which consists of two hidden layers and one
output layer. Assuming that the state space dimension
dimg = 200, the action space dimension dim, = 16,
and the dimension of the first hidden layer is 512,

the total number of parameters from input to the first
hidden layer Np, is:

Np, = 200 x 512 4 512 = 102912 (16)

the dimension of the second hidden layer is 1024, so
the total number of parameters from the first hidden
layer to the second hidden layer NV, is:

Np, = 512 x 1024 + 1024 = 525312 (17)

the total number of parameters from the second hidden
layer to the output layer Vs is:

Np, = 1024 x 16 + 16 = 16400 (18)

the total number of parameters for the DeepPath
network Np is:

Np = Np, + Np, + Np, = 1271824 (19)

The NCRL [24] is trained based on a neural network
that includes an Embedding layer, an LSTM layer, a
Linear layer, and an Attention layer. Assuming the
action space dimension is 16 and the Embedding layer
dimension is 1024, the number of parameters in the
Embedding layer Ny, is:

Ny, = (16 + 1) x 1024 = 17408 (20)

the parameters of the LSTM layer include the
weights and biases for the input-to-hidden and
hidden-to-hidden connections. Assuming both the
input and hidden layer dimensions are 1024, the
number of parameters in the LSTM layer Ny, is:

Ny, = 4 x (1024 x 1024 4 1024 4 1024 x 1024 + 1024)
(21)

= 8396800
assuming the input and output dimensions of the

Linear layer are both 1024, the number of parameters

Np, can be expressed as:
Ny, =1024 x 14+ 1 = 1025 (22)

the Attention layer consists of three Linear layers, so
the number of parameters in the Attention layer Ny,

can be expressed as:
Ny, =3 x (1024 x 1024 + 1024) = 3148800  (23)

therefore, the total number of parameters in the NCRL
model Ny is:

Ny = 17408 + 8396800 + 1025 + 3148800 = 11564033
(24)
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Under the same parameter settings, the number of
parameters required for quantum circuit is N =
(3x3+1) x 16 = 160, significantly reducing the
number of parameters needed for model training.

Quantum circuits, through quantum superposition
and entanglement, can represent high-dimensional
states with a small number of qubits. However,
this compression capability has not been fully
realized in current classical-based quantum simulators,
where the storage and computational demands
far exceed those required for actual operation on
quantum hardware [27]. Classical simulators need
to explicitly store the entire quantum state vector,
i.e., all amplitudes [26], whereas in actual quantum
hardware, these values are implicitly encoded in the
physical system and do not require explicit storage.
Furthermore, classical simulators cannot achieve
exponential parallelism via quantum superposition
states as quantum hardware can, and thus must
simulate all possible paths sequentially, increasing the
processing time requirement.

6 Experiments

In this section, we first introduce the experimental
setup, including the dataset, baseline, evaluation
metrics, and parameter settings. Then, the main
results of the proposed model were introduced, and all
baselines were compared on two benchmark datasets.
Furthermore, the training parameter quantities of
different models were analyzed and compared.

6.1 Database and Settings

To evaluate the performance of the QIRL method
in entity prediction tasks, partial KG data was
extracted from two benchmark datasets, Kinship and
YAGO3-10, for testing. The Kinship dataset is small
but logically complex, testing the model’s reasoning
ability with sparse data. The YAGO3-10 dataset is
large and diverse, evaluating the model’s scalability
and generalization.The increase in the number of
relationships in knowledge reasoning enhances the
completeness of reasoning paths and improves the
accuracy of knowledge reasoning. Constrained by the
computational hardware’s processing capabilities, the
quantum reinforcement learning model in this paper
contains 16 qubits and can handle 16 relationships
in the dataset. To find the reasoning path more
efficiently, breadth first search is performed from both
the head entity and tail entity directions. The action
space includes the relationships between entities and
their inverse relationships. The statistical data of the
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extracted dataset is shown in Table 1:

Table 1. Statistical data of the dataset.

Dataset  entities rel train Test wvalid

Kinship 104 16 4897 1226 581

YAGO3-10 123183 16 313569 3867 3572
The QIRL model parameters proposed in this

paper include the quantum bit count numgubits of
the quantum circuit, the learning rate lr of the
model training, the entity embedding dimension
embeddinggim, the reinforcement learning discount
rate v, the maximum number of attempted steps
for reasoning path search max;ength, etc., where
num_qubits is the number of relationships contained
in the dataset. To improve the generalization ability
and accuracy of the model, this paper generates
positive and negative samples of the test set data
based on pra [25]. This paper uses a TransE based
method to train embedding vector representations of
entities and relationships. The optimal parameters
for the model are embeddinggim = 100, v = 0.99 and
mazxength = 50.

6.2 Baseline and Evaluation Index

This paper compares embedding-based methods and
path-based methods to explore their performance
on the dataset used in this paper. Embedding-based
methods include translation-based method TransE
[11], rotation-based method RotalE [19] and
complex vector space-based method CompleEx [20].
Path-based methods include neural network-based
and logical reasoning combined method NeuralLP
[21], deep learning-based and relational reasoning
combined method DRUM [22], rule-based method
RulE [23], neural network-based and symbolic
reasoning combined method NCRL [24], and
reinforcement learning-based method DeepPath [18].
In order to ensure the fairness of the experiment.,
this paper used the publicly released source code of
each model and adopted the best hyperparameters
provided in the original text for the experiment.

Table 2. Comparison of relationship path numbers.

Dataset  Average Path number
Kinship 69
YAGO3-10 5

In this experiment, Mean Average Precision (MAP)
and Accuracy were used as evaluation metrics. This
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Figure 2. Comparison of relationship path numbers.

paper primarily focuses on the tail reasoning task and
evaluates it on the tail entity reasoning task, namely
predicting the entity represented by ? in (h;, r;, 7). For
each test triplet (h;,r;,7), start from the head entity
and search for the tail entity based on the generated
reasoning paths. Tail reasoning tasks are the main
focus of this paper, while head reasoning tasks and
relationship reasoning tasks can also be converted into
this paradigm.

6.3 Main Results

Figure 2 shows the entity reasoning MAP values of
the QIRL method on different relationships between
the Kinship and YAGO3-10 datasets, and Table 2 lists
the number of reasoning paths found by the QIRL
method on the Kinship and YAGO3-10 datasets. The

agent found more reasoning paths in the Kinship
dataset than in the YAGO3-10 dataset, which means
the agent can find strongly correlated reasoning paths
in the YAGO3-10 dataset and filter out similar or
unrelated ones, but it is difficult to find the most
relevant reasoning paths in the Kinship dataset. In
addition, when the number of reasoning paths is too
small, it is also difficult to find sufficient reasoning
evidence to obtain reasoning results.

As shown in Table 3, the test results of QIRL method on
YAGO3-10 are better than those on Kinship, because
the correlation between entities in Kinship is low,
and QIRL cannot find sufficient reasoning evidence
on Kinship. However, in YAGO3-10, the correlation
between entities is high and the QIRL method can
find sufficient reasoning evidence for reasoning, thus
obtaining good test results.

Table 3. Reasoning results.

Model Kinship YAGO3-10
MAP Accuracy MAP Accuracy
TransE[11] 0.325 0.237 0.072 0.099
RotalE[19]  0.875 0.744 0.071 0.082
ComplEx[20]  0.806 0.651 0.041 0.051
NCRL[24] 0.366 0.337 0.950 0.950
NeuralLP[21] - 0.088 - 0.001
DRUM][22] - 0.135 - 0.004
RulE[23] 0.665 0.649 0.713 0.697
DeepPath[18]  0.307 0.314 0.658 0.594
QIRL 0.326 0.312 0.661 0.594

Table 4. Comparison of parameter numbers in different

models.
Model Parameter number
QIRL 160
DeepPath 644624
NeuralLP 139936
DRUM 204513
RulE 4722205
NCRL 11564033

Compared with embedding-based methods,
path-based methods such as QIRL perform worse on
Kinship. Embedding-based methods are reasoning
through distance or similarity measures. The
relationships in Kinship are mostly simple and
symmetrical, and most relationships can be directly
learned through geometric relationships in the
embedding space. However, path-based methods
such as QIRL do not fully utilize the simple structures
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Table 5. Comparison of model performance on accuracy and parameter number.

Model Kinship YAGO3-10 Parameter Parameter
MAP Accuracy MAP Accuracy number number
DeepPath[18]  0.314 - 0.594 - 644624 ~ Improvement
NeuralLP[21] 0.088 -71.975% 0.001 -99.832% 139936 +78.292%
DRUM[22]  0.135 -57.006% 0.004 -99.327% 204513 +68.274%
NCRL[24] 0337  7.325% 0950 59.33% 11564033 -1693.919%
RulE[23] 0.649 106.688% 0.697 17.340% 4722205 -632.552%
QIRL 0.326  -0.637%  0.594 - 160 +99.975%

in the data, so embedding-based models can
better leverage their advantages. On YAGO3-10,
the performance of embedding-based methods
significantly decreases due to the complexity of
YAGO3-10 relationship reasoning tasks. At this point,
path-based methods such as QIRL can better capture
the complex relationships between entities.

The performance of QIRL on Kinship and YAGO3-10
is inferior to path-based methods such as RulE
and NCRL. RulE learns explicit logical rules for
reasoning and directly utilizes the inherent structure
and relationships in the data. Therefore, it can
achieve better results on Kinship dataset with clear
regularity in relationships. NCRL combines neural
networks and logical reasoning, using graph neural
networks to process graph structured data, which can
effectively learn potential patterns between entities and
relationships. Therefore, it can achieve good results in
the YAGO3-10 dataset with complex relationships and
no clear rules.

Table 4 shows the number of network training
parameters for different models. Through comparative
analysis, it can be clearly seen that compared to other
methods, the QIRL algorithm requires significantly
fewer parameters in the model training process,
only requiring hundreds of parameters to effectively
train the model and achieve excellent results. This
feature enables the QIRL algorithm to significantly
reduce the computational resource consumption of
the model while maintaining efficient training. By
significantly reducing the number of parameters,
QIRL not only demonstrates significant advantages in
memory and computing resources, but also effectively
avoids problems such as overfitting, thereby improving
the model’s generalization ability and robustness in
practical applications. Overall, the QIRL algorithm
has improved model performance and significantly
enhanced computational efficiency by optimizing the
number of parameters, demonstrating its potential in
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complex tasks.

As shown in Table 5, QIRL significantly reduces the
number of model parameter while maintaining high
model accuracy. In contrast, other methods typically
increase the training parameters to improve accuracy
or sacrifice model accuracy in order to reduce the
number of parameter. Table 5 compares exclusively
neural network-based methods to ensure parameter
computability.

7 Conclusion

This paper proposes a quantum reinforcement
learning-based knowledge reasoning method, QIRL,
which significantly reduces the number of model’s
training parameter and computational complexity
by leveraging quantum advantages through the
construction of a quantum circuit to train the policy
network. However, most quantum computing still
relies on classical computer simulators to test and
validate quantum algorithms, and these simulators
have much higher storage and computational demands
compared to the actual requirements when running
on quantum hardware. In the future, further
optimization of the quantum reinforcement learning
model’s performance is expected, aiming to reduce
the number of model’s training parameter while
improving reasoning accuracy.
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