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Abstract

As a carrier of genetic information, the precise
design and optimization of nucleic acid (DNA or
RNA) sequences are of critical importance for the
realization of specific biological functions. From
synthesizing genes to designing novel nucleic
acid drugs, from constructing efficient expression
vectors to modifying microbial metabolic pathways,
all are inseparable from the fine regulation of
nucleic acid sequences. The primary purpose
of nucleic acid sequence design is to generate
new sequences tailored to specific requirements
for gene expression, function prediction, drug
development, and other applications. In this paper,
we first review the theoretical basis of nucleic
acid sequence design, followed by an overview
of current research methods for nucleic acid
sequence design. Traditional nucleic acid sequence
design methods rely on manual experience and
experimentation, and although some progress has
been made in the past decades, they still suffer

Academic Editor:
Abdur Rasool

Submitted: 03 January 2025
Accepted: 27 March 2025
Published: 30 April 2025

Vol. 1, No. 1, 2025.
4.10.62762/]JAIB.2025.194547

*Corresponding author:

Yanfen Zheng
zhengyanfen95@gmail.com

12

from high cost, long time, and low efficiency in
most cases. Therefore, optimizing nucleic acid
sequences to improve their performance and
stability has become particularly important. In
recent years, artificial intelligence technology
has provided a new direction for the design and
optimization of nucleic acid sequences, opening
up new possibilities for more efficient and accurate
design methods. These methods include traditional
rule-based nucleic acid sequence optimization
approaches as well as Al-driven optimization
methods for nucleic acid sequence generation.
This review systematically examines the latest
advancements in both traditional and Al-driven
nucleic acid sequence design methods and analyzes
the technical details, strengths, and limitations
of each application. Finally, the article discusses
the current challenges and future development
directions of nucleic acid sequence design.
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1 Introduction

In the field of contemporary life sciences, the intelligent
design and optimization of nucleic acid sequences
have become a hot issue in research, among which
the design and optimization of nucleic acid sequence
design are particularly critical and at the core, which
is not only one of the core issues in the fields of
synthetic biology, gene editing, and bio-informatics
but also a key link in the development of life
science and technology. The fundamental goal is
to design and generate sequences that meet the
multiple requirements of function, stability, and
synthesizability according to the specific application
needs, to promote the progress of genome engineering,
drug development, and precision medicine [1]. In
recent years, nucleic acid sequence design technology
has made significant progress, especially in tool
development, algorithm optimization, and application
expansion [2-4]. Through the introduction of
artificial intelligence algorithms and automated
design platforms, nucleic acid sequence design
has achieved efficient and intelligent closed-loop
optimization, significantly improving the efficiency
of sequence-function prediction and optimization [5].

Nucleic acid sequence design is widely used in
synthetic biology [6], precision medicine [7],
agriculture and food [8], industrial production [9]
and information storage [10], etc. In synthetic biology,
nucleic acid sequence design not only optimizes the
efficiency of gene synthesis, but also accelerates the
development of synthetic gene circuits and biological
components, and promotes the development of
tields such as biomanufacturing and environmental
protection [11-13]. Meanwhile, the introduction
of deep learning and artificial intelligence has
brought revolutionary breakthroughs in nucleic
acid sequence design, improving the accuracy and
efficiency of gene expression efficiency, stability
prediction, and sequence optimization [14-16]. With
the development of high-throughput screening
technology, experimental data-driven models have
led to significant improvements in the accuracy
and speed of functional verification of nucleic acid
sequence design [17]. The rapid development in
the field of information storage has also opened up
new application prospects for nucleic acid sequence
design [18].

With continuous technological innovations, nucleic
acid sequence design will play an increasingly
important role in the future and drive significant
changes in related fields. This review explores

intelligent design and optimization methods
for nucleic acid sequences, focusing on existing
technologies and methods, as well as future challenges
and development directions. The paper first reviews
the basic theories of nucleic acid sequence design,
discussing the structural features, functions, and
importance of DNA sequences in gene expression,
which lays the foundation for the subsequent
chapters. It then introduces traditional rule-driven
DNA sequence optimization methods, focusing on
strategies based on biological laws and chemical
constraints, while also addressing their limitations
in practical applications. Next, the paper explores
intelligence-driven optimization methods, including
generative models such as Variable Auto-Encoders,
Generative Adversarial Networks, and Diffusion
models, as well as optimization techniques based on
large language models. These Al-driven approaches
offer greater flexibility and accuracy for handling
complex design tasks, overcoming some of the
limitations inherent in traditional methods. The
paper then discusses the practical significance
of nucleic acid sequence design, along with the
challenges involved in structure prediction. Finally,
it summarizes the current challenges in nucleic acid
sequence design and presents potential directions
for future development, highlighting how intelligent
algorithm-based approaches can drive further
innovations in biology and medicine.

2 Basic theories of DNA sequence design

DNA sequence design and optimization aims to
accurately construct DNA sequences according to
specific functional requirements.  This process
involves the basic theories of molecular biology,
computational biology, optimization algorithms, and
artificial intelligence. = Therefore, understanding
these basic theories is crucial for effective DNA
sequence design and optimization [19, 20]. DNA,
as a carrier of genetic information, consists of four
nucleotides—adenine (A), thymine (T), cytosine
(C), and guanine (G)—which are arranged in a
specific order to form a double helix structure. The
nucleotide order determines the transmission of
genetic information and the expression of genes [21,
22]. In addition to encoding proteins, DNA also
plays a crucial role in various biological functions,
such as regulating gene expression and protein
synthesis [23, 24]. Therefore, when designing DNA
sequences, several basic principles need to be followed.
Firstly, to ensure the realization of gene function, the
designed sequence should meet specific biological
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Figure 1. Theoretical foundations to the application of sequences design.
(a) The biological principles of DNA sequences (DNA structure, gene expression, genetic coding, etc.). (b) Principles
and methods of DNA sequence design, including rule base, random generation, machine learning, deep learning, and
other methods. (c¢) The technical applications of DNA sequence design, including gene synthesis, drug synthesis, and
protein synthesis fields.

needs, such as encoding specific proteins or realizing
gene regulatory functions [25, 26]. Secondly, high
expression efficiency must be ensured, so that the
expression level of the target genes meets experimental
requirements [27]. The expression level of DNA is
influenced by various factors. These factors include
promoter strength, codon usage bias, RNA secondary
structures, mRNA stability, and compatibility with
the host cell’s transcriptional machinery. Therefore,
the designed sequence must not only meet functional
requirements but also optimize these factors as much
as possible to improve the efficiency and stability of
gene expression [28]. In addition, the feasibility of the
synthesis process (e.g., avoiding repetitive sequences
or high GC regions) and compatibility with the host
cell’s genetic background (e.g., codon usage bias,
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presence of restriction enzyme sites, and promoter
or terminator compatibility) must also be considered
during sequence design [29].

In the process of DNA sequence design and
optimization, multiple optimization theories and
methods are usually applied. The optimization
goal is often not a single gene expression level but
involves the balance and optimization of multiple
goals, such as sequence stability, synthesis cost,
transcription, translation efficiency, etc.[30]. At
this time, multi-objective optimization methods
are particularly important, which can find the best
balance between multiple conflicting goals. For
example, codon optimization can enhance both
translation efficiency and mRNA stability, while
adjusting sequence complexity (e.g., reducing
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homopolymeric runs) may lower synthesis difficulty
without compromising functionality [31, 32].
Combinatorial optimization methods, such as genetic
algorithms and Monte Carlo simulations, are often
used to achieve multi-objective optimization. These
methods iteratively evaluate sequence variants
based on global parameters (e.g., GC content,
thermodynamic stability) and dynamically balance
conflicting objectives [33]. Meanwhile, DNA sequence
design is often accompanied by constraints such
as sequence length, secondary structure, and gene
regulatory element limitations [34], which increase
the complexity of the design problem, and thus
constrained optimization methods have emerged,
which help to find the optimal or near-optimal
solution under the premise of satisfying biological
or engineering constraints. Overall, DNA sequence
design is a complex, multi-faceted problem requiring
integrated optimization approaches under biological
constraints.  As illustrated in Figure 1 [35], the
theoretical foundation, design process, and application
of DNA sequences are presented.

3 Traditional rule-driven DNA
optimization methods

sequence

Traditional rule-driven DNA sequence optimization
methods rely on biological principles and empirical
laws to optimize gene expression, stability, and
synthesizability by adjusting key elements (e.g.
codons, GC content, secondary structure, etc.) in
the gene sequences [36-38]. The core idea of these
methods is to avoid some negative factors affecting
gene expression or synthesis efficiency through the fine
design of DNA sequences without relying on complex
machine learning or artificial intelligence algorithms.

Codon optimization is a common strategy to
enhance gene expression levels [39].  Codon
preferences for the same amino acid vary across
organisms, so by replacing codons in the target
gene that do not match the host cell’s tRNA usage
preferences, translation efficiency can be significantly
improved, thus enhancing the gene expression
level [38, 40]. While codon optimization improves
expression, excessive replacement of rare codons
(over-optimization) may disrupt, over-optimization
(e.g., eliminating all rare codons) may inadvertently
disrupt co-translational protein folding or mRNA
stability [41]. Secondly, rational optimization of GC
content is also an important aspect of DNA sequence
design. Excessively high or low GC content can
lead to difficulties in DNA synthesis or sequence

instability, so it is a commonly adopted optimization
method by adjusting the GC ratio to avoid regions of
extreme GC content [38, 42]. Recent studies suggest
combining GC optimization with thermodynamic
stability calculations (e.g., using mfold) to balance
synthesis feasibility and mRNA function [43]. In
addition, repetitive sequences and low-complexity
regions in DNA sequences (e.g., long homopolymers
of T or A and regions rich in single bases) can affect
the effectiveness of PCR amplification and may lead
to instability of the expression system [44—46]. For
example, the elimination of poly-A/T tracts longer
than six nucleotides can reduce polymerase slippage
errors during the synthesis process [47]. Therefore,
the design of these regions needs to be avoided during
optimization to ensure gene stability. The design of
promoters and regulatory elements is also crucial [48].
By rationally selecting the strength of promoters
and optimizing the location of ribosome binding
sites (RBS), transcription and translation efficiency
can be effectively enhanced, thereby increasing the
level of gene expression [49, 50]. However, promoter
optimization must align with host RNA polymerase
specificity (e.g., T7 promoters in E. coli) to avoid
transcriptional incompatibility [51]. In addition,
secondary structures of DNA sequences (e.g., hairpin
structures, pseudoknots, stem-and-loop structures,
etc.) can affect the translation process of genes and
even lead to the stagnation of gene expression [52, 53].
Therefore, avoiding or reducing the formation of
these unfavorable secondary structures is another key
strategy to optimize gene expression [54]. For instance,
stable secondary structures (AG <-5 kcal/mol) are
minimized using tools like NUPACK, while weak
hairpins in 5 UTRs may be retained to enhance mRNA
stability [55, 56].

Traditional rule-driven DNA sequence optimization
methods include a variety of strategies, each of which
functions according to different optimization goals
and application scenarios. The template variation
method optimizes gene expression and stability by
mutating existing template sequences, but it relies
on the template itself, which may lead to the design
of sequences that lack innovation in structure or
function and cannot avoid the inherent bias of the
templates [57, 58]; The random sampling method, on
the other hand, generates and screens sequences on a
large scale to find an efficient design, and although it is
capable of exploring a wider range of possibilities, the
search is less efficient due to combinatorial explosion
(e.g., the number of possible variants for a 1 kb
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gene may exceed 10%°) [59]. In contrast, Al-driven
methods differ fundamentally in three key aspects:
(1) Design Paradigm: Al models (e.g., Transformers)
learn hidden rules from large-scale sequence-activity
datasets, enabling multi-objective optimization
(e.g., balancing translation efficiency and mRNA
stability) [60]; (2) Innovation Potential: Al generates
non-natural sequences (e.g., synthetic promoters
with less than 40% sequence similarity to natural
sequences) that bypass template limitations [61]; (3)
Efficiency: Compared to traditional random sampling,
Al-driven virtual screening can reduce the number
of candidates for experimental validation by over
90% [62]. For example, the Linear Design algorithm
optimizes mRNA secondary structures 10,000 times
faster than manual methods while maintaining codon
adaptation [63]. These advancements highlight the
complementary roles of traditional and Al-driven
approaches in advancing synthetic biology.

4 Intelligence-driven optimization of DNA
sequence generation

4.1 Generative Models

Generative models can generate new sequences
similar to real sequences by learning the statistical
properties of DNA sequences [64, 65]. In addition
to data generation, generative models can also enable
dimensionality reduction by mapping the data space to
the latent space, as well as predictive tasks by utilizing
this learned mapping or supervised /semi-supervised
generative model design [66, 67].

4.1.1 Variable Auto-Encoders

In the field of machine learning-driven DNA sequence
design, generative models have gradually received
widespread attention due to their potential to explore
complex sequence spaces and discover novel design
solutions. Variable Auto-Encoder (VAE) [68], a
classical probabilistic generative model consisting
of an encoder E and a decoder D, demonstrates
unique advantages in sequence design tasks by its
effective latent space characterization and flexible
data generation capabilities. ~VAE combines the
nonlinear representation capabilities of deep learning
with the generative properties of probabilistic models,
providing a powerful tool for biological sequence
optimization and functional prediction [68, 69]. In
DNA sequence design workflows, the VAE converts the
input DNA sequences (usually represented by one-hot
encoding or tokenized) into the mean and variance of
a probability distribution (e.g., Gaussian distribution)
in the latent space using an encoder [70]. The

16

latent vector is then obtained by sampling from this
distribution and passed to the decoder, which maps
the latent vector back into the DNA sequences space
to generate a new DNA sequence [71]. The training
goal of the VAE is to minimize the reconstruction
error and the KL divergence between the latent
space distribution and a prior distribution, thereby
learning a structured latent space capable of generating
sequences similar to the original data [68]. Through
this approach, VAE can generate DNA sequences that
meet specific functional requirements, such as gene
optimization and expression regulation. Figure 2(a)
illustrates this application process.

The VAE demonstrates significant potential in
biological sequence design, particularly excelling
in functional sequence generation and stability
optimization [71]. Its core strength lies in enabling
controlled generation through probabilistic modeling
of the latent space—researchers can efficiently
learn latent representations of DNA sequences
and sample the latent space to generate optimized
sequences based on specific objectives (e.g., high
stability) [69]. For instance, Sadeghi et al. [72]
utilized VAE to design DNA-stabilized silver
nanoclusters, enhancing sequence stability and
functionality through automated feature extraction.
Hawkins-Hooker et al. [71] generated functional
protein variants, validating VAE’s efficiency in
protein design. Meanwhile, Greener et al. [73]
and Moomtaheen et al. [74] applied VAE to
metalloprotein design, novel protein fold exploration,
and nanomaterial optimization, highlighting its
versatility in biomolecular functional innovation.
These studies demonstrate that VAE not only
generates function-specific sequences but also
provides systematic support for sequence stability,
synthesizability, and cross-scale optimization.

4.1.2 Generative Adversarial Networks

Generative Adversarial Network (GAN) is a
generative model composed of a generator (G) and
a discriminator (D), first proposed by Goodfellow
et al. [75] in their seminal work. In DNA sequences
design, the generator (G) takes a noise vector z as
input and generates a new sample G(z) as output [76].
In other words, the generator is responsible for
mapping the potential space to the data space. The
discriminator (D), on the other hand, takes as input
a sample x and outputs a probability value D(x),
which is used to evaluate whether x originates
from a real data distribution or is synthesized by
the generator G. The two networks are trained by
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adversarial training. These two networks optimize
each other using adversarial training, with the
discriminator D aiming to maximize the probability
of correct classification, while the generator G
attempts to confuse the discriminator by minimizing
its probability of misclassifying the generated
sample G(z) Figure 2(b) [66]. Essentially, this
adversarial mechanism forms a zero-sum game until
an equilibrium is reached, where the discriminator D
is unable to tell whether G(z) originates from the true
distribution or not.

The application of GAN in DNA sequence design has
made significant progress in recent years, especially in
gene expression optimization, synthetic biology, and
new molecule design [77]. By using GAN, researchers
can generate DNA sequences that meet specific needs,
regulate gene expression, optimize synthetic processes,
and even create artificial genomes [78]. Moreover,
GAN s have an edge in generating sequences with high
fidelity, functionality, and preservation of complex
structures, especially in tasks that require integration
with experimental validation, such as protein design
or data augmentation [79, 80]. Yu et al. [81] proposed
the MichiGAN model, which samples single-cell
data using generative adversarial networks and
demonstrates the application of GAN in biological
data generation. Yelmen et al. [82] used generative
neural networks to successfully create an artificial
human genome, further driving innovation in DNA
sequence design. Zrimec et al. [14] regulated DNA
sequences through deep generative design to optimize
gene expression and demonstrated the application
of GAN in gene expression regulation. In addition,
MedGAN proposed by Macedo et al. [83] optimized
GAN in combination with Graph Convolutional
Networks(GCN) for generating new molecular
structures, further expanding the application of GAN
in DNA sequence design and molecule generation.
Through these studies, GAN provides a revolutionary
technological pathway for DNA sequence design and
gene expression optimization, which promotes the
development of fields such as precision medicine,
gene editing, and synthetic biology.

4.1.3 Diffusion models

Diffusion models (DM) are a class of generative
models that have achieved remarkable success in
recent years in generative tasks, especially in the fields
of image generation, speech generation, and sequence
generation. The basic idea is derived from the diffusion
process in non-equilibrium thermodynamics [84],
where the model simulates a forward stochastic

differential equation (SDE) to progressively add noise
to data, followed by a reverse SDE to recover the
original data through iterative denoising. Unlike
VAEs and GANs, DM generates DNA sequences
by explicitly modeling the sequential corruption
and reconstruction of sequence distributions [85].
Specifically, the diffusion model first performs a

'noise addition” process on the input DNA sequence,

which gradually transforms it into a random noise
sequence [86], and then gradually denoises it through
a learned back-diffusion process to recover a DNA
sequence that meets the functional and structural
characteristics of the target Figure 2(c) [87]. The
strengths of diffusion models stem from their ability
to model high-dimensional correlations through the
progressive denoising mechanism, as well as their
flexible conditional control interfaces, which endow
them with broad application prospects in the fields of
precision medicine and synthetic biology [85, 88].

In recent years, DM has been gradually applied to
DNA sequence design as an emerging method for
generating and optimizing gene sequences. The
potential diffusion model proposed by DaSilva et
al. [85] provides an innovative framework for DNA
sequence generation, which generates DNA sequences
by mapping them into the potential space and
accurately controls the properties of the generated
sequences through an optimization process. Sarkar
et al. [86] used the discrete diffusion model to
design DNA sequences with modifiable activities,
providing a new design tool for gene regulation
and synthetic biology. Wang et al. [89] proposed
the AptaDiff model specifically for the design of
aptamers and used the diffusion model for the de novo
design and optimization of novel aptamers, which
effectively improved the targeting and specificity of the
sequences. In addition, the Dirichlet diffusion model
introduced by Avdeyev et al. [90] provides a new
theoretical basis for biological sequence generation,
which is based on the Dirichlet process to optimize
the sequence generation process, thus enhancing the
diversity and biological functions of the generated
sequences. Through these studies, the diffusion model
provides a powerful generative capability for the
design and optimization of DNA sequences, especially
showing great potential in the fields of gene expression
regulation, aptamer design, and bioinformatics.

4.1.4 Large Language Models

With the emergence of large-scale pre-trained language
models, especially in the field of Natural Language
Processing (NLP), many researchers have started to
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Figure 2. Several different model architectures for generating DNA sequences.

(a) VAE model: the encoder maps the input data to the latent space, the decoder reconstructs the data from the latent
representation, and the model is optimized by the reconstruction loss and the regularization loss. (b) GAN model: the
generator produces synthetic DNA sequences, the discriminator evaluates the authenticity of the data, and the model is
trained by optimizing the loss function of the discriminator. (c) Diffusion model: the inference process is shown in detail.
Blue squares represent the noise added to the hidden representation of the DNA sequence. (d) Language model: after
embedding the input data, the model processes the sequence with multi-head attention and layer normalization, then

applies feed-forward networks to generate the output embeddings.

draw on the principles of language models to deal
with genomic data and develop genomic language
models [91]. The basic goal of language models
is to predict the next word in a given context by
learning the relationship between individual words
in a language [92, 93]. In NLP, language models are
usually trained based on large amounts of textual
data to learn how to predict the next word based
on the previous word, thus generating coherent
sentences [94]. Analogous to DNA sequence design,
DNA sequences can also be viewed as a form of
"language," where ‘'words’ can be base pairs (A, T, C, G)
or vocabularies obtained through other tokenization
techniques (such as K-mer, One-hot encoding) [95, 96].
The model learns the relative positions and order
of bases or tokens in various ways, enabling it to
generate reasonable and biologically meaningful DNA
sequences, as shown in Figure 2(d) [97]. The core
advantage of language models stems from the ability
of the self-attention mechanism to model long-range
dependencies and the multimodal conditional control
interface, which has opened up a new paradigm for
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precision medicine and synthetic biology [98, 99].

Language models have been widely used in the design
and analysis of DNA sequences, especially in the
fields of genomics and synthetic biology. By using
linguistic models, researchers can deeply understand
the "language” of DNA sequences and generate DNA
sequences that meet specific needs. For example, Ji
et al. [100] proposed the DNABERT model, based
on the bidirectional encoder representation (BERT)
architecture, which was successfully applied to the
pre-training of DNA sequences and demonstrated its
powerful language model ability in genome sequence
analysis. Shao et al. [101] developed a long context
language model for decoding and generating the
bacteriophage genome, which provides a new idea
for genome sequence generation. Nguyen et al. [13]
proposed the Evo model, which combines molecular
to genomic-scale sequence modeling and design,
demonstrating its potential for large-scale genomic
analysis and providing new insights for gene design.
Recently, Madani et al. [102] successfully generated
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functional protein sequences of multiple families using
a large-scale language model. These studies show that
language models provide powerful theoretical and
technical support for the design of DNA sequences,
and can help predict gene function, optimize gene
expression, and promote the further development of
genomics.

5 Applications of Nucleic Acid Sequence
Design and Structure Prediction

5.1 Role of nucleic acid sequence design for
structure prediction

Nucleic acid sequence design plays a crucial role in
nucleic acid structure prediction. Through in-depth
analysis of nucleic acid sequences, researchers
can identify potential structural features, folding
rules, and functional regions, providing powerful
support for structure prediction. In particular,
methods such as evolutionary information, multiple
sequence comparison, covariance analysis, and
secondary structure prediction can significantly
improve the accuracy of structure prediction [103].
Meanwhile, sequence analysis models based on
machine learning and deep learning can automatically
learn the complex relationship between sequence
and structure from a large amount of data, further
promoting the development of nucleic acid structure
prediction technology. For instance, Aslam et al. [104]
demonstrated how adaptive machine learning
frameworks enhance predictive accuracy in biological
systems through domain-specific optimization.
With the continuous enrichment of datasets and
technological advances, nucleic acid sequence analysis
will play a more important role in nucleic acid
structure prediction in the future.

The functions of nucleic acids (e.g., catalysis,
regulation, binding ligands, etc.) often depend on
their 3D structures; therefore, predicting the 3D
structures of nucleic acids can help design sequences
with specific functions, enhance the accuracy of
the design, and advance the understanding of
the functions of nucleic acids, as well as optimize
the process of sequence analysis, improve the
accuracy of comparisons, support the discovery of
drug targets, and guide experimental design and
genetic engineering. Butt et al. [105] highlighted
the integration of intelligent classification models
in biomedical applications, which aligns with the
need for precision in functional nucleic acid design.
Structure prediction promotes a comprehensive
understanding of nucleic acid sequences by providing
insightful structural context for sequence analysis.

DNA or RNA sequences in the genome form specific
three-dimensional structures when folded, and these
structures determine molecular interactions and
biological functions. By accurately predicting these
structures, it can help to design more functional
molecules, rather than just predicting their basic
function based on sequence. For example, in
nanobiotechnology,  self-assembling DNA or
RNA molecules are designed to form specific
nanostructures or nanomachines [106]. Rasool et
al. [107] further exemplified this by developing
a DNA-based file storage system optimized for
medical data, demonstrating the synergy between
sequence design and structural stability. Using 3D
structure prediction, sequences with predetermined
structures can be designed and their stability
and functionality in practical applications can be
ensured. Additionally, Rasool et al. [108] proposed
a strategy-based optimization algorithm for DNA
data storage encoding, underscoring the importance
of sequence-structure co-design in emerging
technologies. The two complement each other along
with various deep learning approaches paving the
way for each other.

5.2 Development and status of nucleic acid
structure prediction

At the end of the 20th century, Westhof et al. [109]
used molecular mechanics and molecular dynamics
simulation software (e.g., AMBER, GROMOS, Xplor,
etc.), which are based on classical physical models
and algorithms to simulate the changes in nucleic
acid structure by calculating the interaction energies
between atoms. Multiple sequence comparison tools,
such as CLUSTAL, were used to find similarities
between sequences based on dynamic programming
algorithms or heuristic algorithms. Subsequently,
in the 21st century, methods based on comparative
sequence analysis such as the RNAfold method [110]
are limited by arithmetic power and algorithms
and are not accurate enough in predicting complex
RNA secondary structures. It is extremely difficult
to fully understand the RNA folding mechanism.
While data-driven methods are powerful in scenarios
with limited mechanistic understanding, models
integrating domain knowledge (e.g., thermodynamic
rules or evolutionary conservation) often achieve
superior interpretability and performance. For
instance, hybrid approaches combining deep learning
with biophysical principles have advanced RNA
structure prediction [111]. These methods can learn
the underlying folding patterns from large amounts
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Figure 3. Progress in the field of nucleic acid structure prediction.

of training data. Over the past decades, machine
learning and deep learning methods have been used in
many aspects of RNA secondary structure prediction
methods to improve prediction performance. Figure 3
illustrates the development of nucleic acid structure
prediction in the Al era.

RNA secondary structure prediction methods based
on machine learning and deep learning typically
learn functions that map inputs (features) to outputs
by tuning model parameters based on known input
and output pairs. Many of them employ free
energy parameters, encoded RNA sequences, sequence
patterns, or evolutionary information as key features,
and their outputs can be categorical labels (e.g.,
paired or unpaired) or continuous values (e.g., free
energy). When new inputs are provided to a trained
model, the model can classify the corresponding
labels or predict the corresponding values [112].
The nearest neighbor model (NNDB) developed
by Turner [113] was an early and fairly commonly
used approach, which provided a fairly accurate
approximation of RNA free energy. However, several
thermodynamic parameters of the NNDB model had
to be based on a large number of optimal melting
experiments, which were both time-consuming and
labor-intensive [55, 114], and due to the associated
technical difficulties, not all free energy changes in
the structural elements could be measured. Due to
the difficulty of obtaining the relevant parameters,
several machine-learning techniques have been used
to optimize the parameters in energy models. These
techniques can use fine-grained models that estimate
fractions using known thermodynamic data or RNA
secondary structure data to obtain richer and more
accurate representations of the features. Xia et
al. [115] first trained a linear regression model
using known thermodynamic data to infer some of
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the thermodynamic parameters and extended the
neural network model to a more accurate model, the
INN-HB model. This model provides a better fit for
known experimental data. However, a disadvantage
of this approach is that the parameters of some
structural elements are fixed before other parameters
are calculated, which limits the range of possibilities
for the entire parameter set.

Although machine learning-based free energy
parameter methods have successfully improved the
accuracy of RNA secondary structure prediction, the
energy model is still far from ideal. The machine
learning-based parameter estimation methods can
only replace some wet lab experiments aimed at
obtaining energy parameters. As a result, Zakov
et al. [116] proposed the ContextFold tool, which
not only relies on traditional energy parameters but
also takes into account the contextual information
in the RNA structure, significantly improving the
accuracy and flexibility of RNA structure prediction.
Later, Akiyama et al. [117] integrated thermodynamic
methods with SSVM and developed MXfold, which
overcame the limitations of traditional tools in energy
model optimization and large-scale data processing,
but had limited prediction accuracy for long-stranded
RNAs (e.g., mRNAs or IncRNAs) and did not support
the prediction of pseudo-knots. Sato et al. [118]
developed MXfold2 to overcome the above-mentioned
limitations, marking a new level of performance in
RNA structure prediction.

Since 2020, more and more models for predicting
the 3D structure of nucleic acids based on deep
learning methods have appeared in the public eye with
innovations in technologies related to deep learning
and nucleic acid sequence design. Linyu Wang’s team
proposed a new method called DMfold [119] based
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Figure 4. Several different model architectures for predicting nucleic acid 3D structures.

(a) ARES network updates features based on atomic elements and coordinates and predicts the RMSD of RNA structure
by averaging all atomic features. (b) DGNN is trained by obtaining 252 labeled designs through SNUPI, generating
augmented designs, and using different loss functions with parameter optimization using Adam optimizer. (c)
E2Efold-3D predicts 3D structures from scratch using RNA sequence information, initializes features by MSA and
pre-trained models, generates structures using E2Eformer, and optimizes the loss function by structural constraints. (d)
REDfold network converts RNA sequences to conformations and predicts secondary structure score maps through
feature extraction and encoder-decoder network, and finally draws structure images.
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on Bi-LSTM to predict the secondary structure of
RNA containing pseudoknots, which combines deep
learning and the improved base pair maximization
principle, fully absorbing the advantages and avoiding
some of the disadvantages of the multi-sequence
method (MPM) and the single-sequence method
(SPM), but DMfold does not achieve the optimal
accuracy in the case of known However, the accuracy of
DMfold is not optimal when the sequence is known to
be insufficient, and with the continuous optimization
of sequence design technology, DMfold will gain more
space for development. Kunitski et al. [120] proposed
the first end-to-end deep learning model SPOT-RNA
to predict the secondary structure of RNA.SPOT-RNA
treats RNA secondary structure as a CT table and uses
an ultradeep hybrid network that combines ResNet
and 2D-BBN to predict the secondary structure of
RNA. SPOT-RNA treats RNA secondary structures
as CT tables and uses an ultra-deep hybrid network
that combines the ResNet and 2D-BLSTM networks
to make predictions, with the ResNet network
capturing contextual information across the entire
sequence and the 2D-BLSTM efficiently propagating
long-range dependencies in RNA structures. Through
migration learning, SPOT-RNA can achieve good
results even with limited samples. Experimental
results showed that SPOT-RNA performed well
on multiple RNA benchmark datasets, and in a
follow-up development, the SPOT-RNA2 model
was proposed by the same research group [121].
This model employs evolutionarily derived sequence
profiles and mutation coupling as inputs, uses the
same migration learning approach, and outperforms
SPOT-RNA in all types of base pair prediction.
Shen et al. [122] developed the E2Efold-3D model,
as shown in Figure 4(c), which is another deep
learning for predicting RNA secondary structure,
E2Efold-3D is another method that can directly
predict the 3D structure of RNA without external
templates, which greatly improves the accuracy
of RNA structure prediction through secondary
structure-assisted self-distillation, multidimensional
information fusion, and joint training, especially in
addressing data scarcity and structural complexity,
showing its unique advantages. It is worth mentioning
that E2Efold uses a deep learning approach to achieve
end-to-end RNA structure prediction by obtaining
binary classification scoring matrices of base pairs
from input RNA sequences, whereas the ARES model,
as shown in Figure 4(a), which is different from the
classification model E2Efold, is a regression model
based on geometric deep learning developed by
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Townshend et al. [123] only trained a new RNA
tertiary structure scoring model from 18 known
RNA tertiary structures published between 1994 and
2006. The input to ARES is the 3D coordinates
and chemical element type of each atom, and the
output is the root-mean-square deviation (RMSD)
between the predicted structural model and the
true structure, which means that ARES learning
is completely featureless without any predefined
features, and the model directly learns and extracts
features from the raw data, effectively reducing human
bias and significantly excelling in the discovery of new
features. ARES significantly outperforms other scoring
functions and models despite using a limited number
of known RNA structures. The REDfold model, as
shown in Figure 4(d) [124], which uses a CNN-based
encoder-decoder network to learn the dependencies in
RNA sequences and effectively propagates information
across layers through symmetric skip connections,
achieves better performance in both efficiency and
accuracy for RNA secondary structure prediction.
Another RNA prediction model, Ufold, instead of
directly inputting the 3D coordinates and chemical
element type of each atom, inputs a matrix of all
possible base pairs (canonical and non-canonical base
pairs) and pairing features of the RNA sequence. Ufold
converts the input matrix and pairing features into base
pairing probabilities for predicting the RNA secondary
structure through the use of a fully convolutional
network (FCN) [125].

The outstanding contribution of nucleic acid sequence
design in structure prediction is not only in the
direction of RNA prediction but also in the direction
of DNA, Chien Truong-Quoc’s team has developed a
DNA-origami-based graph neural network (DGNN),
as shown in Figure 4(b) [126], which is more focused
on the instantaneous and accurate prediction of DNA
origami structures. The authors” innovative hybrid
data-driven and physically-guided training approach
greatly alleviates the difficulty of training purely
data-driven models for DNA origami design, as the
dataset is very scarce, and the authors also integrate
pre-trained models corresponding to various shapes
of DNA origami, which enhances the adaptability and
performance of the DGNN for various types of data.
The DGNN also makes outstanding contributions in
the areas of structure prediction of supramolecular
assemblies and inverse design of DNA origami.
DGNN has also made outstanding contributions in the
areas of supramolecular assembly structure prediction
and DNA origami inverse design. Recently, many
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large language models (RNA-LLM) for RNA structure
prediction have appeared [127], and perhaps shortly,
there may be new advances in the combination of
nucleic acid structure prediction and large language
models.

6 Challenges and future directions

Despite significant progress made by intelligent design
and optimization methods in the field of nucleic acid
sequences, multiple technical bottlenecks and systemic
challenges remain. Existing computational models
can perform preliminary predictions using rule
engines, machine learning, and generative approaches;
however, considerable uncertainty persists when
dealing with complex nonlinear systems such as gene
regulatory networks [128, 129]. The experimental
validation phase relies on high-throughput screening
technologies, which are plagued by the high cost
of equipment and consumables, thereby limiting
the overall research and development efficiency of
the "computation-experiment” dual-track validation
model. Moreover, practical applications of artificial
intelligence face three key constraints: computational
resources, data quality, and ethical standards.
Training deep generative models consumes enormous
computational power—for instance, handling
databases with millions of sequences requires
terabyte-level storage and GPU clusters [130]; noise
data in public nucleic acid sequence databases
can account for as much as 30%, and the scarcity
of data for certain disease-related targets severely
undermines model reliability [131, 132]; additionally,
the "black box" nature of Al may lead to issues such
as untraceable decision-making and algorithmic bias.
For example, in gene editing design, the absence of
an interpretable mechanism might conceal potential
off-target risks [133].

Nevertheless, Al technologies have demonstrated
revolutionary empowerment potential across the
entire nucleic acid sequence design chain. From RNA
three-dimensional structure prediction algorithms
expanded from AlphaFold3 to target-sequence
matching systems incorporating Transformer
architectures, Al has reduced traditional design
cycles from months to weeks [134]. Furthermore,
deep generative models can automatically generate
candidate sequences that satisfy specific binding
energy, stability, and functionality criteria; when
combined with automated experimental platforms,
they enable high-throughput synthesis and
validation [16]. This closed-loop approach not

only accelerates the development of antiviral nucleic
acid drugs but also provides a new paradigm for
the design of cancer vaccines and gene editing tools
(such as CRISPR). However, the ultimate challenge
of technological implementation lies in balancing
the pace of innovation with risk management. Only
by establishing a multidimensional governance
framework that encompasses technological
interpretability, data ethics, and public engagement
can we ensure that Al truly advances nucleic acid
sequence design toward precision and responsible
innovation.

Future breakthroughs should focus on multimodal
data integration and interdisciplinary collaborative
innovation. By integrating multidimensional data
from genomics, epigenetics, and proteomics, a more
comprehensive framework for sequence function
prediction can be constructed. At the same time,
developing lightweight model architectures (such
as those based on knowledge distillation) and
distributed computing solutions is expected to lower
the computational threshold, while the adoption of
privacy-preserving techniques like federated learning
can help alleviate data silo issues. On the ethical
front, it is necessary to establish a transparent
mechanism that spans the entire lifecycle of model
design, training, and deployment—for example, by
introducing linear artificial chromatography imaging
methods to elucidate neural network decision paths
and by supervising technological compliance through
a dynamic ethics review committee.

The application of artificial intelligence in nucleic
acid sequence design has already demonstrated
enormous potential, yet its practical implementation
still requires balancing the speed of innovation
with risk management. Only by building a
multidimensional governance system that includes
technological interpretability, data ethics, and public
participation can Al truly drive nucleic acid sequence
design toward precision and responsible innovation.
Through technological breakthroughs, expanded
applications, and improved governance, Al is poised to
usher in a new revolution in the life sciences, providing
a powerful engine for human health and sustainable
development.
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