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Abstract
Plant diseases create one of the most serious risks
to the world’s food supply, reducing agricultural
production and endangering millions of people’s
lives. These illnesses can destroy crops, disrupt
food supply networks, and increase the danger
of food deficiency, emphasizing the importance of
establishing strong methods to protect the world’s
food sources. The approaches of deep learning have
transformed the field of plant disease diagnosis,
providing sophisticated and perfect solutions for
early detection and management. However, a
prevalent concern with deep learning models is
their susceptibility to a lack of generalization
and robustness when faced with novel crop and
disease categories that were not included in the
training dataset. To tackle this problem, this
study present a novel deep learning-based model
that can differentiate between healthy and diseased
leaves in various crops, even if the model was
not trained on them. The main idea is to
identify the diseased small leaf regions instead
of the diseased leaf’s overall appearance and to
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calculate the disease’s prevalence rate on the entire
leaf. To achieve efficient classification and to take
advantage of the Inception model’s superiority in
disease recognition, this study use a small Inception
model architecture, which can process small regions
without sacrificing performance. This study trained
and evaluated the proposed approach using the
highly regarded PlantVillage dataset, which is the
most used dataset because of its extensive and
varied coverage, in order to verify its efficacy. The
accuracy percentage of the proposed approach was
99.75%. This novel method tackles the crucial
problem of model generalization to a variety of
crops and diseases in addition to improving the
precision of plant disease diagnosis. Furthermore,
it demonstrated its potential for wide applicability
and support to global food security programs by
outperforming the current methodologies in its
capacity to identify any illness across any crop type.

Keywords: deep learning, agriculture, plant disease,
disease detection.

1 Introduction
Agriculture is a vital part of all economic systems
and a basic source of food that ensures life will
continue. To maximize output and raise quality,
the agriculture industry must be improved. This
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entails creating the ideal environment for crops and
plants to develop healthily. Plant degradation is
typically caused bydiseases. The Food andAgriculture
Organization of the United Nations (FAO) estimates
that the annual cost of these diseases to the world
economy is around $220 billion. They cause harm to
crops and, occasionally, their complete destruction. In
fact, viruses, bacteria, fungi, and microscopic animals
attack plants, altering their original form and affecting
their important functions [1].

Plants can be saved when infections are detected early
and neutralized. To protect crop health and ensure
ongoing agricultural productivity, early diagnosis
of plant diseases is essential. However, manual
inspection is a major component of traditional systems,
which makes them unreliable, time-consuming, and
unsuitable for large-scale farming. Due to a lack
of experience, farmers frequently find it difficult
to detect infections early on, which causes delays
in interventions and large crop losses. Given that
agriculture is the foundation of many economies
and food security systems, automated, precise, and
effective disease detection methods are desperately
needed. Deep learning models have emerged as a
promising solution to these problems.

The crops are safeguarded, and losses are prevented
to a greater extent the sooner they are identified. Due
to a lack of expertise and experience, the conventional
methods of disease detection—which are primarily
reliant on human diagnosis—are insufficient and
time-consuming [2]. The diagnosis must be based
on a more trustworthy technique because the data
collection method and verification frequency are also
insufficient. Modern technologies have been provided
as an automatic way to identify plant diseases for this
purpose [3]. Among these technologies, advanced
instruments like sensors, drones, and robots have
transformed farmers’ field management [4], and
machine learning has opened up new avenues for data
analysis [5].

With encouraging outcomes, the use of deep learning
and machine learning approaches in plant disease
identification is a quickly developing subject [6].
However, because deep learning-based techniques rely
on automatic feature extraction rather than human
feature selection, they have demonstrated their efficacy
above other machine learning techniques, particularly
in relation to image identification [7]. DL-based
methods for the Identification and detection of plant
diseases have been proposed in a number of research

studies. However, there are a lot of barriers that keep
this technology from being used more effectively. The
impossibility of gathering dataset photos for every
illness across all leaf kinds is, in fact, one barrier.
Furthermore, a number of illnesses are spreading
quickly, making it difficult to catch them on leave on
time.

Furthermore, the study [8] demonstrated that the
system is impacted by both the crop’s and the disease’s
properties during the learning process. This implies
that features taken from one crop and illness cannot be
transferred to other crops and diseases. Classification
model training on a dataset comprising pairs of various
crops and diseases is necessary to create a generalized
model for classifying plant diseases. Unfortunately,
there isn’t a dataset like that, and creating one is
difficult, if not impossible. On the planet, there are
millions of crops and plants, and millions of diseases
could harm them.

Even though deep learning has demonstrated
remarkable outcomes in the Identification of plant
diseases, currentmodels frequently lack generalization
and resilience. The majority of methods are trained on
certain datasets and have trouble detecting illnesses in
new crops or in different environmental settings. This
constraint occurs because small, disease-affected areas
are not given asmuch attention to conventional models
as the overall appearance of the leaf. Developing
dependable, scalable solutions for actual agricultural
settings is made more difficult by the lack of labeled
datasets that reflect a variety of crop kinds and disease
categories. To overcome these constraints, a model
that can accurately identify diseases in a variety of
crops and environments is needed.

This study presents a unique deep learning-based
approach that aims to address this obstacle by
generalizing the method for identifying plant diseases
in various kinds of plants, hence overcoming the limits
of specific crop training difficulties reported in the
existing research. Our method is centered on the
primary goal of diagnosing the disease, not just the
sick leaf’s outward look. It places special emphasis
on identifying the healthiness or illness in tiny leaf
fragments. This study produced a method to achieve
this, which involves dividing each image of leaves in
the training dataset into smaller patches, so separating
the disease from the healthy parts. By using this
dividing approach, it is easier to extract disease-related
information from the crops and enhance healthy data.
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2 Related Work
Afsharpour et al. [9] and Albahar [10] claim that
DL models enhance fruit disease diagnosis and boost
agricultural productivity. For the detection of fruit rot,
the approach suggested in [10] was more reliable. By
altering factors like lighting and picture obstructions,
the suggested approach was able to overcome the
consequences.
Huang et al. [11] proposed neural network enhanced
multi-scale feature extraction and citrus fruit disease
detection by combining the form of the inception
module with the cutting-edge EfficientNetV2. The
VGG was used instead of the U-Net backbone to
enhance the network’s segmentation performance.
The proposed neural network, which was developed
by combining the Inception module with the
cutting-edge EfficientNetV2, enhanced multi-scale
feature extraction and citrus fruit disease detection.
Lokesh et al. [12] proposed an artificial intelligence
strategy for identifying leaf sickness that incorporates
generative adversarial networks (GAN) and deep
learning. The strategy surpassed current techniques,
achieving higher classification accuracy for healthy
and diseased leaf images. Wang et al. [13] improved
the design of ResNet by suggesting a multi-scale
ResNet. The system is used to identify vegetable
leaf diseases on constrained hardware by lowering
the model’s size. The multi-scale ResNet has
outperformed other systems (VGG16, AlexNet,
SqueezeNet, and ResNet50). Ren et al. [14] proposed
a new system, the deconvolution-guided VGG
network, for detecting tomato leaf illnesses and
segmenting disease areas. The proposed model is
capable of dealing with all image difficulties, including
low light, shadows, and occlusion. Guo et al. [15]
created a customized tomato leaf disease identification
system for Android mobile devices. This method
easily differentiates between different diseases at
various stages by altering the steps of the AlexNet
design, resulting in the Multi-Scale AlexNet.
Using an improved version of MobileNetV3, Qiaoli
et al. [16] described a real-time, non-destructive
method for detecting tomato illnesses. The method
addresses the problem of model overfitting brought
on by insufficient data by optimizing MobileNetV3. In
order to differentiate between healthy and diseased
leaves, Khalid et al. [17] concentrated on training
a DL model, namely the YOLOv5 system. Both
public and exclusive datasets were then used to
test the trained system. The results show how
quickly and precisely the model can detect even tiny

disease areas on plant leaves. Panchal et al. [18]
suggested a strategy for detecting crop diseases
that includes segmenting images, labeling diseased
leaves, pixel-based operations, feature extraction, and
convolutional neural networks (CNN) for disease
classification. To identify and segment tomato
plant illnesses, Shoaib et al. [19] combined semantic
segmentation methods (U-Net and Modified U-Net)
with deep learning (Inception Net).

3 Methodology
The suggested model, shown in Figure 1, creates four
classes for assessing and estimating the suggested
frame by utilizing four well-known transfer learning
techniques: ResNet152, VGG19, DenseNet169, and
MobileNetv3. After being subjected to four different
transfer learning techniques, the data is analyzed and
split into two sets: 80% for training and 20% for
testing. This division is essential for generalizability
assessment, model performance validation, and
training. The suggested model shows reliability in
a range of situations. In this work, we extend the
dataset to train a deep learning model in plant disease
diagnosis by the use of image augmentation, a crucial
method utilizing Keras’ Image Data Generator. The
model is exposed to a greater variety of variations
by generating altered copies of images with rotations,
zooming, and flipping, which enhances the model’s
capacity to handle new data. This is essential to
simulate the variability found in medical imaging
and strengthen the model’s resistance to noise and
fluctuations. The ultimate objective is to create a robust
and dependable deep learning model, particularly in
themedical fieldwhere data is scarce and case diversity
and unforeseen conditions are critical. During model
training, changes like zooms, flips, shifts, and rotations
are added to help create balanced classes.

Figure 1. Proposed Model.

38



IECE Journal of Image Analysis and Processing

This augmentation technique helps create a training
dataset that is more varied and extensive, which
improves the model’s ability to generalize in a wide
range of situations. There are two benefits to using
ImageDataGenerator while training a model. In order
to strengthen the deep learning model’s ability to
recognize complex patterns and features, it first makes
sure that the model is exposed to a wider range of
training data. Furthermore, the automatic production
of enhanced images improves the resilience of the
model by reducing its susceptibility to overfitting and
increasing its ability to adjust to a wide range of input
variables. This augmentation-driven method has been
shown to be effective in raising deep learning models’
overall performance, which improves accuracy and
durability in practical applications [20].

3.1 Transfer learning model evaluation
A machine learning technique called transfer learning
allows a model to be learned for one job and
then applied to another that is related to it. This
approach shortens the effort and time needed to create
high-performing systems, particularly for challenging
jobs like natural language processing and picture
recognition. Through fine-tuning an established
model’s weights, scientists can effectively address
novel problems. By utilizing the knowledge gathered
from a sizable dataset during the first training phase,
transfer learning enables the system to efficiently
handle novel difficulties.
This method differs with the usual way of training a
system from the ground up, which can be resource
intensive and time-consuming. In several fields,
such as speech recognition, picture identification and
natural language processing, transfer learning has
shown promise, particularly in situations with little
training.

3.2 ResNet152
Microsoft Research created ResNet-152, DCNN
architecture with 152 layers. The main advancement
in it is the use of residual connections or skip
connections, which allow the network to learn residual
functions and ease the training of exceptionally deep
networks [21]. ResNet-152 is effective at tasks like
object recognition and image classification because
of its depth, which enables it to excerpt complex
patterns and features from data. When combined with
skip connections, this architectural depth solves the
vanishing gradient issue and makes it simple to train
incredibly deep networks, as seen in Figure 2.

Figure 2. Architecture of RESNET-152.

3.3 Visual geometry group 19
An advancement over the original VGG16 design
is the DCNN (deep convolutional neural network)
method called VGG19. There are sixteen convolutional
layers and three completely linked layers, totaling
19 layers in this model. VGG19’s deep structure,
which employs 3×3 convolutional filters for feature
extraction, allows it to extract complex patterns and
features frompicture data [22]. By reducing the spatial
dimensions of input, max-pooling layers minimize
computing complexity. Due to the entire connectivity
of the final layers, predictions derived from high-level
characteristics taken out by the convolutional layers are
possible. For nonlinearity, VGG19 employs the ReLU
(Rectified Linear Unit) activation function. Often
employed in image classification. In terms of efficiency
and performance, it has been outperformed by more
recent designs, such as ResNet and Inception, despite
their simplicity and depth. Figure 3 shows the VGG19
architecture.

Figure 3. Architecture VGG19.

3.4 DenseNet169
A CNN architecture called DenseNet169 was created
to address issues with gradient flow and feature reuse
in deep networks. In order to restrict the feature’s
growth map and minimize its spatial dimensions,
transition layers are used in between dense blocks.
The Global average pooling layer, which lowers the
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number of parameters and improves expansions, is
frequently used in DenseNet designs. DenseNet169
has proven to perform well in challenges involving
image classification. The architecture of DenseNet169
is shown in Figure 4.

Figure 4. DenseNet169.

3.5 MobileNetv3
A neural network architecture called MobileNetV3
was created for edge and mobile devices with
limited processing capacity. This third version of
the MobileNet series prioritizes accuracy, efficiency,
and speed. Two variations, MobileNetV3-Large and
MobileNetV3-Small, lightweight inverted residuals
and resource-efficient construction blocks are among
the key features [23]. The architecture of MobileNetv3
is shown in Figure 5.

Figure 5. Architecture of MobileNetv3.

4 Experiments
A particular dataset was used to train the Transfer
Learning (TL) model, and a matching test dataset
was used to assess it. Keras, Sklearn, and TensorFlow

Table 1. Results from four different transfer learning
models More than 50 Epochs.

Architecture Testing Training
Loss Acc Loss Acc

VGG19 0.124 95.62 0.045 99.07
ResNet152 0.185 96.92 0.0603 98.86

MobileNetv3 0.127 98.52 0.0359 99.75
DenseNet169 0.958 97.53 0.0241 99.22

cooperate to ensure the model’s success. For
high-end systems, 128 block size was ideal. Both the
test and train sets were subjected to cross-entropy
loss. The results are reported in Table 1. The
DenseNet169 model behaved differently than the
VGG19, MobileNetv3, and ResNet152 models, which
all had close training and validation losses.

This study highlights how essential it is to use a Deep
Learning model for the Identification of plant disease.
20% of each class was chosen at random from 14,059
photos in the PlantVillage dataset that were tested. The
model classified leaves as either healthy or ill with an
accuracy rate of above 95%. However, some photos
were incorrectly categorized because of dirt or poor
illumination.

The Adam optimizer was utilized in the study to
train 50 models using cross-entropy loss. The results
indicated that whereas DenseNet169 had a different
pattern, with training loss reduced and validation
loss increasing, VGG19, MobileNetv3, and ResNet152,
models had near validation and training losses.

MobileNetv3 had the best testing accuracy of 99.75%
among the four transfer learning models that were
assessed. DenseNet169, on the other hand, displayed
oscillations, suggesting sensitivity to changes in the
dataset. The accuracy of ResNet152 was continuously
high at 98.86%, but MobileNetv3 outperformed it
due to its lightweight design and effective feature
extraction. These findings demonstrate how crucial
model architecture is for striking a balance between
generalization, accuracy, and computational economy.
VGG19 and ResNet152 models had training and
validation losses, but MobileNetv3 demonstrated
a steady training process with few oscillations.
ResNet152 demonstrated the best performance among
the four transfer learning models assessed in the study,
with a validation loss of 0.0241 and 98.86%.

DenseNet169’s training and validation accuracy
fluctuated themost, despite having the lowest accuracy.
Promising outcomes were also displayed by VGG19
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andMobileNetv3, however there was some fluctuation
in validation accuracy.

4.1 Results and discussion of the experiment
The suggested transfer learning systems use the
confusion matrix to evaluate their results, which
includes metrics such as recall, precision, accuracy,
and F1 score. Using common criteria, such as
accuracy, precision, recall, and F1 score, the model’s
performance was assessed. Precision quantifies the
proportion of identified diseased leaves that were
correctly diagnosed, whereas accuracy indicates the
overall correctness of forecasts. The F1 score offers a
compromise between precision and recall, whereas
recall shows how successfully the model detected
every diseased leaf. The confusion matrix, which
is commonly a square matrix, provides a thorough
perspective of model outcomes. Table 2 shows the
confusion matrix, with FP denoting false positives,
FN denoting false negatives, and TP denoting true
positives. The F1 score is calculated as the harmonic
means of recall and precision.
This study evaluated the proposed model’s
performance using multiple indicators and provided
the findings. The model’s resilience is demonstrated
by the low false positive and false negative rates, while
the high true positive rates in every category show
that it successfully detects a variety of disease types.
The model’s capacity for generalization is further
supported by its excellent performance across several
classes. A useful tool for evaluating the model’s
classification results is the confusion matrix. This
matrix categorizes diseases from 1 to 3, with each
integer identifier representing a specific disease type:
1 for "fungal diseases," 2 for "bacterial diseases," and 3
for "viral diseases." This systematic numbering clearly
represents the model’s classification findings. The
confusion matrix shows that the MobileNet model
outperformed expectations.
These numerical values in the matrix offer important
information about how well the model classifies
photos of various conditions. The maximum accuracy
was attained by ResNet152, which was followed by
DenseNet169, MobileNetV3, and VGG19, which all
showed respectable accuracy but fell short. These tests,
which were carried out after each model was trained
for 50 epochs, indicate that ResNet152 performed
better than the other systems on a consistent basis. The
fourmodels’ different topologies highlight the complex
trade-offs between system computational efficiency
and accuracy. This study gives important insights into

Table 2. Accuracy Analysis across Epochs for Various
Transfer Learning Methods.

Transfer
learning model Stage M×-Ep M×-Acc Mi-Ep Mi-Acc

VGG19 Training 50 98.78 1 70.22
Testing 50 96.91 1 81.45

DenseNet169 Training 50 98.12 1 69.34
Testing 45 97.78 6 80.96

ResNet152 Training 38 99.08 1 95.42
Testing 47 98.68 2 90.77

MobileNetv3 Training 30 99.75 1 77.12
Testing 46 99.52 1 90.27

well-informed decision-making by helping to identify
their strengths and limitations.

4.2 Discussion
A thorough summary of the accuracy measurements
for each model at both the highest and least epoch
counts is given in Table 2. With the highest validation
accuracy of 98.52% at epoch 45 and epoch 50, this
study get the greatest training accuracy of 99.75%,
and the MobileNet model performs better than any
other model. The names Mi_Acc and Mx_Acc stand
for Minimum Accuracy and Maximum Accuracy,
respectively, and Mi_Ep and Mx_Ep for Minimum
Epochs and Maximum Epochs, respectively, to aid in
clear communication and notation.
By juxtaposing the current state of the field with the
anticipated outcomes of this research, Table 2 and
Figure 6 comprehensively illustrate the evolutionary
trajectory and projected advancements in plant disease
detection and classification methodologies.
The potential for practical use in agricultural
monitoring systems is indicated by the MobileNetv3
outstanding accuracy and stability. Farmers can use
the model to detect diseases in real time scenarios
using drones or mobile devices, allowing for prompt
action, and minimizing crop loss. This useful tool can
help farmers better control crop health, reducing yield
loss and guaranteeing sustainable farming methods.
A crucial component of the proposed strategy is the
MobileNetv3 model, which has an amazing 99.75%
accuracy rate. This demonstrates that the model is a
useful tool for disease diagnosis since it can effectively
identify and predict the presence of any illness in plant
pictures.
The comparison of classification accuracy between the
suggested and other currentmodels is shown in Table 3.
The comparison of classification accuracy between the
suggested and other cutting-edge techniques is shown
in Figure 6. With an accuracy of 99.75%, Figure 7
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Table 3. Comparison of the suggested and other models’ classification accuracy.
Author Year Dataset Method Accuracy

Wang et al. [13] 2020 AI Challenge2018, Self, PlantVillage, CNN (Multi-scale ResNet) 95.95%
Ren et al. [14] 2020 PlantVillage CNN (Deconvolution Guided VGGNet) 93.25%
Guo et al. [15] 2019 PlantVillage, Self CNN (Improved Multi-Scale AlexNet) 92.7%
Qiaoli et al. [16] 2022 PlantVillage CNN (MobileNetV3) 98.25%
Khalid et al. [17] 2023 PlantVillage, self CNN (YOLOv5) 93%
Panchal et al. [18] 2023 PlantVillage CNN (naïve network) 90.40%
Shoaib et al. [19] 2022 PlantVillage CNN (Inception Net) 99.12%
Our proposed model 2024 Plant village Transfer Learning Approach 99.75%

Figure 6. Timeline for training four models of transfer
learning.

makes it abundantly evident that the suggested system
carried out better than other models.
The comparison analysis shows that the suggested
MobileNetv3-based model performs better than the
current state-of-the-art methods for detecting plant
diseases. Table 3 illustrates that the accuracy
of the suggested method was higher than that
of earlier models, including Multi-scale ResNet
(95.95%), Deconvolution-Guided VGGNet (93.25%),
and Improved Multi-scale AlexNet (92.7%). The
MobileNetv3 model, on the other hand, outperformed
all other techniques with an exceptional classification
accuracy of 99.75%.
The model’s capacity to generalize across many kinds
of crop and disease circumstances while preserving
computational efficiency is what makes this work
significant. The suggested approach concentrates
on identifying discrete diseased patches rather than
the overall appearance of the leaf, in contrast to
standard models, which frequently struggle with
changing environmental circumstances and emerging
disease categories. This method improves the
model’s resilience and qualifies it for use in practical
agricultural applications, such as real-time field

Figure 7. Comparison of the accuracy of suggested and
state-of-the-art methods.

monitoring via drones and mobile devices.
Therefore, the suggested method is a useful tool
for precision agriculture since it not only increases
detection accuracy but also tackles critical issues with
model generalization, computational effectiveness,
and realistic deployment.

5 Conclusion
The work rigorously evaluates the effectiveness of
four different transfer learning systems— VGG19,
ResNet152, MobileNetv3, and DenseNet169, on the
Plant Village Dataset. The evaluation includes critical
performance indicators like precision, accuracy, recall,
and f1-score. ResNet152 outperformed all other
models in the study with an impressive accuracy of
98.5%. Furthermore, MobileNetv3 has outstanding
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effectiveness, with 99.75% accuracy, demonstrating its
excellent results in plant disease detection. Integrating
multiple imaging modalities enhances the proposed
model’s performance, durability, and real-world
application. Even though the suggested model
performed remarkably well on the Plant Village
Dataset, still there exist a number of validity
risks. The dataset’s controlled conditions may have
contributed to the high accuracy attained, and the
model’s performance may differ in real-world settings
with varying lighting, background noise, and leaf
occlusions. Furthermore, the research’s ability to be
applied to different agricultural contexts was limited
due to its reliance on a single dataset. Early signs that
manifest on other plant components, like stems and
fruits, may also be missed due to the emphasis on
leaf-based disease diagnosis.

Future research will concentrate on adding real-world
photos from various agricultural settings to the dataset,
combining RGB images with multimodal imaging
(thermal, hyperspectral, and infrared), and refining
the model for deployment on edge devices like
smartphones and drones for real-time monitoring in
order to overcome these limitations. Future study
could look into expanding the suggestedmodel’s usage
improving its flexibility. This extension has the ability
to expand the influence of models. To summarize,
the proposed approach, notably MobileNetv3 and
ResNet152, demonstrate significant potential for
improving image classification. Further research
into various imaging modalities can provide vital
insights and improve illness detection applications
significantly. Future study will evaluate the efficacy
of these models in actual situations using various
datasets. The primary objective of this study is to refine
image enhancement techniques specifically designed
for particular disease groups, thereby facilitating the
development of an optimized computational model
and a comprehensive, balanced dataset for enhanced
diagnostic applications.
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