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Abstract
Stance detection identifies a text’s position or
attitude toward a given subject. A major challenge
in Roman Urdu is the lack of a publicly available
dataset for political stance detection. To address
this gap, we constructed a high-quality dataset
of 8,374 political tweets and comments using
the Twitter API, annotated with stance labels:
agree, disagree, and unrelated. The dataset
captures diverse political viewpoints and user
interactions. For feature representation, we
employed TF-IDF due to its effectiveness in
handling high-dimensional, context-sensitive
Roman Urdu text. Several machine learning
classifiers were evaluated, with Random Forest
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achieving the highest accuracy of 95%. Additionally,
we fine-tuned the transformer-based RoBERTa
model, which outperformed traditional methods
with 97% accuracy. Our results demonstrate the
potential of combining machine learning and
deep learning for stance detection in low-resource
languages. This study not only introduces a novel
dataset but also provides a robust evaluation of
methods, highlighting the importance ofmodernAI
techniques in processing informal and multilingual
text data.

Keywords: stance, roman urdu, machine learning, SVM,
random forest, logistic regression, naïve bayes, decision tree
and RoBERTa.

1 Introduction
Social media platforms have emerged as a crucial
component of communication on the internet and
enables quick streams of information to spread
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amongst its users. Which is an example of a
digital communication that democratized information
and provided citizen voices, this created a major
challenge. Which meets a long overdue demand for
computational tools aiding the automatic analysis
and understanding of all content published and
re-published on social media platforms.

Stance detection is the process of determining a person
attitude or viewpoint toward a specific subject, claim,
or entity. It involves analyzing written or spoken
language. Stance detection is the process of analyzing
written content in order to determine the writer
stance or point of view. Identifying whether the
writer agree, disagree, or is unrelated to the topic
being discussed on social media. For the purpose to
follow public opinion, analyze political debate, and
challenge incorrect information, stance detection is
essential. It helps with fact-checking, policy analysis,
and tracking ideological trends by automating position
classification. Researchers, decision-makers, and
media analysts gain from this application since it
enhances digital information integrity and offers
insights into public opinion.

Popular online platforms Twitter, Facebook and
discussion forums for discussing the incidents/topics
and expressing views. In this realm stance is simply
the opinion of something written by a single person
on some topic or event and personality [1]. Nowadays
the internet is gradually becoming everyone’s main
means of obtaining information and expressing his
feelings. Thus, understanding the rhythm of public
opinion online has become a crucial task for both
the government and businesses. The applications
of the both are to just as deep user attitudes such
as voting/consumer behavior, societies supporting
and rumor detection, researchers are now focuses in
this research era [2]. Intention understanding from
text is an interesting problem that some seekers are
exploring. A will of the user to catch hold off a script
from social media corpuses like Twitter, Facebook
and so on for the analysis of his behavior afterwards
that can serve as bot recognition, satire detection,
and fake news identification etc. stance detection
merely tells it sentiment oriented or biased [3]. Stance
detection or classification problem is nothing but
a subtask of age-old text analytics in which from
the textual data, categorize stance of user with
respect to other passage written by any different
user in order to predict future behavior instead
nature like gender, location etc.. Basically, stance
detection is the process of automatically tagging

how a writer stands on said topic. This job can
only be completed by examining written texts or a
user’s engagement in social debate sites and social
network platforms. Stance an outward public act by
a social actor dialogically executed through external
communication using quotes evaluates the object,
identifies the subject, and aligns his stance with other
speakers on any granted dimension of socio-cultural
activity. There is many definitions of stance detection
(such as stance classification) in socio-linguistics.
“Kockelman” defines it as a performance of the stance
taker’s undesirable attitude or judgment towards
some proposition, and hence align themselves with
others or more broadly but stance can be retrieved
towards any author’s text and all other factor-based
studies were done one at a time for stance detection
i.e., linguistic features, tense lexical aspectual classes
etc. Aside from the real effect stance has on what
we express and in how some say it as well as
other writers that simply say everything. In the
machine learning scenario, stance detection is all
to a classification problem. Predicaments in this
problem are traditionally represented using a pair of
text and an action option (favor, against, and none) [4].
The stance classification process in Roman Urdu
faces special difficulties due to both its code-mixed
composition and phonetic variations and absence
of standardized writing conventions. Traditional
NLP methods perform poorly because different users
spell the same word three ways ("mujhe," "mjhy," or
"mjhe"). The lack of language standards requires
unique preprocessing approaches and specialized
embedding methods during feature extraction. A
text normalization pipeline with improved accuracy
is developed in this work to handle the challenges
presented in stance classification. Roman Urdu is
commonly used in the Indo-Pak subcontinent for
messaging over the Internet since years. People
from subcontinent may speak same language of Urdu,
however they might be using different scripts for
writing. The Roman characters of Urdu script for
writing became very popular in thismodern age. Large
volume of Roman Urdu data is available on online
portals and social media platforms like Facebook,
Twitter that can be extracted to get useful information
if the data gets structured. The best example of the
people who speak roman Urdu using Roman alphabet.
It is currently spoken in Pakistan and using it as a chat
language [5].

A branch of artificial intelligence called machine
learning makes use of algorithms and statistical
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models to enable computer systems learn and carry
out tasks without explicit programming. Algorithms
for machine learning allow computers to recognize
patterns and learn from examples, without being
explicitly programmed making its performance
improve time after time unaided by human action.
These algorithms fit into a few different sub-categories
supervised learning, unsupervised learning, and
reinforced learning, depending on the type of
input data and the anticipated results. Natural
language processing, image and speech recognition,
recommendation systems, and predictive analytics are
just a few of the many domains in which machine
learning realizes utilization. ML technologies are
used in various utilities like social media, health
care, finance sector etc., Auto drive cars, social
media, natural language processing, cyber security and
marketing etc. It has projected those industries into
automation, predictive analytics, recommendations
and decision making. As machine learning continues
to evolve itwill cover theway for all kinds of innovation
and problem solving in other fields as well. With
the use of natural language processing and machine
learning techniques, newmachine learning techniques
have made it possible to extract valuable information
from texts [6].

A major challenge faced early in the research was the
absence of a comprehensive dataset of Roman Urdu
political tweets. Unlike other languages or dialects,
Roman Urdu lacks well-structured, and there have
been no up-to-date datasets that can be readily utilized
for training machine learning models. This limitation
meant that we could not rely on pre-existing resources
to develop models capable of delivering the desired
results for stance detection. Moreover, there has
been minimal to no research conducted specifically
on stance detection in Roman Urdu tweets making this
a relatively unexplored area. As a result, we had to
dedicate considerable effort to constructing a suitable
dataset.

In this research work, we scraped Twitter’s Roman
Urdu political tweets and comments via the Twitter
API. Then we preprocessed the dataset by eliminating
stop words, tokenizing, POS tagging, and then
lemmatizing as well as TF-IDF for converting
textual data into numeric format to make it machine
understandable. After that we experimented
extensively with several machine learning and deep
learning models. By categorizing and evaluating
the effectiveness of current techniques along several
dimensions, such as input selection, feature extraction,

classification algorithms and more, these studies cover
the most recent advancements in stance detection. The
goal of our research work is to identify and categories
RomanUrdupolitical tweets and comments, indicating
whether the comments are in agreement (agree),
disagreement (disagree), or unrelated to the tweet
posted on Twitter. AI-driven stance identification
presents concerns about algorithmic bias, privacy, and
possible use. To stop the spread of false information
and political manipulation, it is crucial to guarantee
data transparency, equitable representation, and
responsible use. In order to ensure fair stance
classification, this study emphasizes ethical aspects
in NLP models. The objectives of this research are as
follows.
• To gather political tweets and comments in Roman

Urdu via the Twitter API.
• To compile a collection of political tweets and

comments in Roman Urdu in order to identify
stances.

• To build and implement use a machine
learning system to detect stance in Roman
Urdu Political tweets.

• To implement and fine-tune a RoBERTa-based
deep learning model tailored for stance detection
in Roman Urdu political tweets, leveraging its
contextual understanding for precise classification
of stance by comparing its result with machine
learning model.

We have briefly introduced the concept of stance
and demonstrating how its features are applied in
computational tasks. Stance refers to the position or
attitude a speaker or writer takes toward a specific
topic, expressed through text. John defines stance as
a "public act by a social actor, achieved dialogically
through overt communicative means, involving the
evaluation of objects, positioning of subjects (self and
others), and alignmentwith others across sociocultural
dimensions".

Figure 1. General procedure of stance detection.

As depicted in Figure 1, stance detection is modeled as
a text classification problem. The process typically
involves analyzing tweets and their accompanying
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comments, which are passed through a classification
algorithm designed to categorize them based on
the stance expressed, such as "agree," "disagree,"
or "unrelated." This schematic outlines the general
approach to stance detection, emphasizing the role
of algorithms in automatically assigning stance tags
based on input features extracted from the text. We
have further defined and distinguished different types
of stance detection tasks through formal definitions
showing how this applies across various real-world
scenarios.
This paper’s remaining sections are organized as
follows. Within Section 2, we have provided a broad
examination of the related work in terms of definition
and task types. Section 3 presents the whole picture
of the stance detection framework from data source,
data acquisition, and preprocessing to annotation,
designing a stance extraction algorithm, etc., and the
main steps are introduced. In Section 4, we explore
the core problem of the framework by categorizing the
key methods, examining the underlying principles of
each, comparing their performance, and evaluating the
accuracy of all classifiers. Finally, Section 5 concludes
the paper, offering insights into future trends.

2 Related Work
In this section, an exhaustive literature review of the
research done in text mining is presented concerning
some novel areas to build a system for stance detection
in Roman Urdu tweets on Twitter. Stance is defined
as the machine learning-and deep learning-based
categorization of tweets into groups like agree,
disagree, or unrelated. The particular objective of this
study is to assess the existing detection techniques,
looking at their advantages and disadvantages as well
as potential areas for development. This study aims
to lay a strong foundation of past research on stance
detection in Roman Urdu online communities, which
will ultimately lead to improved performance.
Küçük et al. [7] provided a Turkish language Twitter
dataset annotated with named entity identification
(NEI) and stances. This dataset is two sub-problems
of NLP which are stance detection and named entity
recognition. While initially only the stance annotations
were released, both named entity and stance are now
available online. This dataset enables potential links
to be investigated with named entity recognition and
stance detection in tweets.
Walker et al. [8] conducted stance categorization
on a corpus of 4731 posts from the discussion

website ConvinceMe.net for 14 themes, ranging from
humorous to ideological. They demonstrate that the
number of response postings in ideological disputes is
higher, and that both people and trained classifiers
find it much more difficult to identify stances in
rebuttal replies. Additionally, they have shown that
the quantity of subjective phrases fluctuates between
arguments, a finding that is connected with how
well computers perform when exposed to terms that
carry sentiment. They show findings ranging from
60% to 75% for categorizing stances according to
topic, in contrast to 47% to 66% for unigram baselines.
According to their findings, accuracy is increased by
features and techniques that consider the dialogic
context of these posts.

Yan et al. [9] developed an entirely novel quick stance
identification system for bipolar affinities on Twitter
using deep learning. The 2016 US presidential election
campaign generated millions of messages on Clinton
and Trump every day on Twitter, which is therefore it
is utilized as a test use case due to its remarkable and
distinctive counterfactual characteristics. Furthermore,
stance detection can be used to infer the public’s
political tendency. Comparing their research to
a number of other stance identification techniques
currently in use, experimental results demonstrate that
their approach generates excellent accuracy outcomes.

Similar to sentiment analysis, stance detection is
concerned with analyzing the sentiments of a
user about some pieces of text. The goal of
stance categorization is to automatically determine
whether the source material favors, opposes or
is neutral toward a target. Ayyub et al. [10] a
study of the performance investigation on machine
learning algorithms including deep learning based
(DBN, CNN-LSTM and RNN), ensemble based (RF,
AdaBoost) and classical one (NB. DT., SVM). There
work was a feature-based analysis on sentiment,
content, tweet-specific and part-of-speech features
using the SemEval2016 and Sentiment Analysis
in Twitter datasets of deep learning based RNN,
CNN-LSTM and DBN. They also studied for stance
categorization the quality of deep features such as
GloVe and Word2Vec. The baseline features (Bag
of Words, Ngram and TF-IDF) are also retrieved
from the two dataset that facilitates a comparison
with their deep based method. The results are also
compared with existing, state-of-the-art performance
evaluation metrics for ensemble learning-based stance
classification upon the prior research. The evaluation
results suggested that deep feature GloVe works
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best when used in conjunction with RNNs, and the
optimal combinations of sentiment and part-of-speech
content (for SVM), played an essential role in stance
classification.

The electronic media is a good thing. News circulates
on online social networks because it is cheap, easy
to find and delivered rapidly. Karande et al. [11]
proposed a fake news detection model, as news is
breaking, but not yet circulating on social media the
model learns more heavily into article content early in
its processing. In their work, they rely on automatic
feature extraction and text parts relevancy to interpret
the content. In short, they achieve state-of-the-art
results for identifying fake news using stance as one
feature in addition to the content of an article and
contextualized word embedding’s that have been
previously trained with BERT. In the testing of a
real-world dataset, shows that their model vastly
outperformed all previous efforts at this classification
task and achieved an accuracy of nearly 95.32%
applicable for fake news detecting.

Stance detection is a level up process from sentiment
analysis, as it features the extent to which an author is
leaning on some aspects of interest like person, event
or government policy, favorable or against about the
positions. Skanda et al. [12] explored stance detection
in a code-mixed English–Kannada dataset composed
of Facebook user comments. The task was framed as a
binary classification problemwith two labels: "against"
and "favor." The dataset contained approximately 6,300
phrases distributed across both classes. To develop
the stance detection system, the authors employed a
variety of text representation techniques—including
bag of tricks, word embeddings, Word2Vec, and
GloVe—as well as deep learning architectures such
as CNN and Bi-LSTM. Interestingly, the simpler "bag
of tricks" approach outperformed the more complex
deep learning models.

With regard to one or more target entities, the
"stance detection" application on Twitter examines
individuals’ opinions in their tweets. A neural
ensemble model that combines the strengths of two
LSTM variations is presented by Siddiqua et al. [13]
in order to produce better long-term associations.
An attention mechanism is integrated into each
module to enhance the contribution of important
components to the final representation. Additionally,
they use a multi-kernel convolution on top to extract
the tweet representations at higher levels. The
primary innovation of the unified model is its

efficient contextual information learning capacity,
which enhances the performance of stance detection
and exceeds the most advanced deep learning-based
techniques for both single and multi-target stance
detection benchmark datasets. A thorough analysis of
numerous single- andmulti-target stance identification
datasets shows that their suggested approach offers
a notable enhancement over the most advanced deep
learning-based techniques currently available.
When information on the sources or the spread
of rumors is lacking, Tian et al. [14] focus on
the early detection of rumors. They noticed that
individuals react to tweets immediately, and that
people often show doubt and suspicion regarding
tweets that spread rumors. They proposed user
attitude distribution for Twitter tweets along with
content analysis to detect rumors early on. They
specifically recommend that convolutional neural
network (CNN) CNN and BERT neural network
language models be trained via transfer learning,
which is dependent on external data sources, for stance
categorization in order to learn attitude representation
for user comments without the need for human
annotation.
Kochkina et al. [15] their study, classify a sequence of
Twitter tweets on rumors using their methodology,
classifying them as either confirming, disputing,
posing queries about, or providing comments on the
underlying claims. They offer a sequential model with
an accuracy of 0.784 that mimics the conversational
structure of tweets and is based on long short-term
memory (LSTM).
The classification of texts is a tool that divides
text into predefined categories using supervised
machine learning algorithms. Shafi et al. [16] applied
five well-known classification methods on an Urdu
language corpus before classifying the documents
using a majority vote approach. The corpus contains
21769 news stories from seven categories: Business,
Entertainment, Culture, Health, Sports, andWeird. As
the algorithms were not capable to directly work with
this data, they performed some preprocessing steps,
making a trigram, Removing stop words Use rule
based stemmer After preprocessing, 93400 features
are retrieved from the data to apply machine learning
algorithms. They also hit 94% recall and accuracy by
way of majority voting.
In any argument, participants may have different
viewpoints on the topic at hand. A user can agree
or disagree on the matter being debated. A user’s
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viewpoint is defined as how much they agree with a
topic. Küçük et al. [17] implemented an algorithm to
classify participants’ agreement or disagreement. The
proposedmodel is a hybrid approach thatmerges topic
modeling and VADER (Valence Aware Dictionary
and Sentiment Reasoner). They conducted a pilot
study using data from Facebook comments and
WhatsApp group chats. As long as social media
apps (e.g., Facebook or Twitter) exist, a massive
corpus of web-based text will continue to grow. The
increasing need to analyze this type of data for
trend analysis has fueled research interest in social
media analytics. The authors also experimented
with improving stance detection in tweets using
Named Entity Recognition (NER). They cited a
public Turkish tweet dataset annotated with stance
information and used it as a baseline. Moreover,
they compared their ensemble approach against SVM
classifiers that utilized unigram features on top of
sentence-level representations. After applying NER,
the named entities were incorporated as additional
features in their SVM-based stance detection tests.
The results demonstrated that a high-performance
NER system can significantly enhance stance detection
performance.

Stance identification, which aims to determine
whether a writer’s attitude toward a specific topic
is neutral, supportive, or opposed, plays a crucial
role in analyzing significant social and political
events. A notable contribution in this field is the
P-STANCE dataset [18], a large-scale collection
of annotated tweets gathered during the 2020 US
presidential election. Küçük et al. [19] conducted
extensive experiments with this dataset using deep
learning models, achieving a state-of-the-art macro
average F1-score of 80.6%. Their performance
was further enhanced through semi-supervised
learning techniques. Beyond model development,
the authors made significant contributions to
cross-target stance detection research by introducing
the P-STANCE dataset and releasing three additional
publicly available Twitter datasets annotated with
stance information, thereby facilitating research
across various domains. They employed SVM
classifiers with diverse feature sets to evaluate stance
detection performance. The feature space included
lexical features (unigrams and bigrams), social
media-specific elements (hashtags and external
links), emotional cues (emoticons), and semantic
information (named entities). Their experimental
results demonstrated that the most effective approach

for stance recognition in tweets combines unigrams,
hashtags, and named entity information within an
SVM framework. This finding provides valuable
insights for optimizing stance detection systems in
social media contexts.

The "stance detection" application on Twitter analyzes
the opinions users have about one or more target
entities in their tweets. Gül et al. [20] propose
a novel framework called COLA (Collaborative
Role-Infused LLM-Based Agents) for stance detection,
which leverages multiple large language model
(LLM) agents, each assigned a distinct analytical
role. Designed primarily for English-language
social media and web content, COLA facilitates
nuanced stance analysis through a three-stage pipeline:
multidimensional text analysis, reasoning-based
debate among agents, and final stance conclusion
generation. The authors evaluate COLA on benchmark
datasets including SEM16, P-Stance, and VAST.
Experimental results show that COLA outperforms
traditional stance detection methods, achieving
accuracy rates of 76.5% and 74.1% on P-Stance and
VAST, respectively. Moreover, COLA demonstrates
strong explainability and user interpretability, making
it particularly effective in zero-shot learning scenarios.

Chuang [21] investigates stance detection in Estonian
immigration discourse, a representative case of
low-resource language processing. The study
introduces a corpus of 7,345 manually annotated
sentences categorized into "support", "against", and
"neutral" stances. Two primary approaches are
examined: fine-tuning BERT-based models and
prompting large language models (LLMs) such
as GPT-3.5. Experimental results show that both
approaches—especially prompt-based zero-shot
methods—achieve strong performance without
task-specific training, demonstrating their utility
in low-resource scenarios. The findings highlight
how modern LLMs can effectively support both
automatic analysis and manual annotation processes,
paving the way for improved stance classification
in underrepresented languages. Wang et al. [22]
presented Dynamic Experienced Expert Modeling
(DEEM) to improve large language models (LLMs)
reasoning abilities through expert simulation. DEEM
uses trained data to create expert potentials then
selects knowledge sources both for frequency counts
and correct outcomes before dynamically retrieving
relevant experts during system operation. Retrieves
relevant experts dynamically during inference. Three
standard datasets P- were used to evaluate the
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performance of the proposed method.
Stance, SemEval-2016, and MTSD DEEM consistently
outperformed existing methods, including those
utilizing self-consistency reasoning, achieving an
average F1 score of 81.1 on P-Stance and 83.4 on
MTSD. The implementation utilized InstructGPT and
ChatGPT models, demonstrating DEEM’s adaptability.
Stance detection tasks demonstrate robust behavior
through this literature review of approaches that work
with multiple languages across different domains and
independent models. Low-resource languages like
Roman Urdu are still understudied despite advances
in stance detection because of a lack of datasets,
inconsistent writing styles, and limited computing
resources. By utilizing deep learning techniques and
presenting a labeled dataset, this study solves these
issues and advances the field of stance classification
research in code-mixed and low-resource Language.
The most recent research on Roman Urdu NLP have
been included in related work, with an emphasis
on developments in stance identification, sentiment
analysis, and low-resource language processing. These
studies show the shortcomings in Roman Urdu stance
detection and give our findings important background.
In our research, a new approach is proposed for stance
detection in Roman Urdu tweets to make it more
effective by employing machine learning algorithms.
Our main objective is to create a dataset of political
tweets and related comments collected through the
Twitter API as initial. After this, we applied text
preprocessing techniques including tokenization, stop
word removal, lowercasing, and lemmatization. We
have selected feature extraction techniques like TF-IDF
and trained multiple machine learning classifiers
such as logistic regression, random forest, support
vector machine (SVM), decision tree, naïve bayes
classifier, and RoBERTa, a deep learning model, to
detect stance in Roman Urdu political tweets. These
model results were evaluated for precision, accuracy,
recall, and other performance metrics. Recent studies
have shown that transformer-based architectures,
including XLM-RoBERTa, T5, and GPT-based models,
significantly enhance stance detection accuracy in
multilingual and code-mixed settings. Their advanced
contextual understanding makes them particularly
well-suited for low-resource stance classification tasks.

3 Methodology
Ageneral framework is suggested in this part as shown
in Figure 2. We explain a brief overview of the core
steps in this framework. The steps are data collection,

data preprocessing, feature extraction and annotation,
stance detection algorithm design, stance tag output,
performance assessment, and data source selection.

3.1 Selecting and acquiring data sources
The entire textual data has been concatenated (tweets
and related comments) are obtained via the Twitter
API. There are also many other aspects to take care of
in terms of the dataset quality and trusting it wholly.
Hence, it was very carefully and thoroughly drafted to
include a variety of Roman Urdu tweets. The details
maintained during this process to ensure a complete
corpus identical in lexical distribution also serve to
reduce biases and maintain the integrity of the corpus.

3.2 Dataset
Tweets were gathered from a variety of political
sources, such as the media, independent individuals,
and official party accounts, in order to avoid dataset
bias. By ensuring a balanced representation of political
positions, a class distribution study decreased the
possibility of skewed categorization results. We first
created a developer account and applied for API access
in order to create a Tweets dataset. Once given access,
we generate the required API keys (API key, API
secret, access token, and access token secret) and
install necessary Python libraries, including Tweepy
for interacting with the Twitter API and Pandas for
manipulating data. We then authenticate the API
keys using Tweepy. Client and specify pertinent
political hashtags or keywords, such as the names of
political parties or Pakistani political leaders. (e.g.,
"#ImranKhan", "#NawazSharif", "#PPP", "#PMLN",
"#PTI"). The tweets are saved in a data frame using
pandas, where we have further processed them for our
research.
To maintain high-quality stance annotation, we
established comprehensive labeling guidelines
that clearly define the criteria for agree, disagree,
and unrelated stance categories. The dataset was
annotated by three independent annotators, with
any discrepancies resolved through discussion.
We computed the inter-annotator agreement to
assess annotation consistency, which demonstrated
substantial agreement. This rigorous approach
minimizes ambiguity and enhances the dataset’s
reliability for stance classification.
To assess the robustness and generalizability of
our model, we evaluate its performance on an
independent dataset collected from Twitter. The
deep learning model achieves an accuracy of
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Figure 2. Framework for stance detection.

97%, indicating its ability to maintain consistent
classification performance across diverse social media

contexts. This evaluation highlights the model’s
effectiveness in handling variations in language,
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topic, and user-generated content, reinforcing its
applicability to real-world stance detection tasks.
Moreover, we expand the dataset by adding
features such as Stance Sentiment, Sentiment Score,
Named Entities, Bag of Word Features, Source and
Dependency Parsing Features, and Stance Target
(Agree, Disagree, or Unrelated). This aims to capture
the intricate web of linguistics present in Roman
Urdu social media discourse. In this research, we
have created a gold standard dataset and laid the
foundation to perform extensive analysis on stance
dynamics in Roman Urdu tweets with meticulous
execution of different stages involved in creation. A
summary of the compiled Roman Urdu political tweet
dataset is shown in Table 1, which highlights the total
number of entries, language, source, and stance labels.
The detailed structure of the Roman Urdu stance
dataset, including tweets, comments, and extracted
linguistic features, is presented in Table 2.

Table 1. Summary of dataset.
Total
Rows

Total
Column Language Source Stance Label

8373 11 Roman Urdu Twitter Agree,Disagree Unrelated

3.3 Data preprocessing
The goal of preparing data is to clean or organize
the data such that its readability, analyzability, and
understandability make it much more learner-friendly.
There are the following subtasks in data preprocessing
we have performed.
• Data cleaning and tokenization: it is a preprocessing

step for NLP, or generally for data analysis.
Data cleaning is the process of removing noise,
handling missing values, and correcting errors
in a dataset so that it becomes normalized,
tokenization means breaking the provided words
into smaller units, called tokens in many cases.
These steps together convert raw data into clean,
structured data fit for analysis or modelling.

• Stop word removal: Stop word removal in Roman
Urdu eliminates meaningless words from the
text, such as ’aur,’ ’ya,’ ’ki,’ ’ke,’ ’tha,’ and ’uska.’
This technique reduces noise and enhances data
quality by ignoring unimportant terms.

• Part of Speech Tagging: This process assigns a part
of speech, e.g., a noun or verb, to each word in the
text. This is important for grammar and used by
some parsing tasks or machine translation. There

are rule-based, statistical, and machine-learning
applications for POS tagging.

• Lowercasing: The task of lowercasing a dataset
is simply converting all the text into lowercase.
This is done to make the text data look alike and
clean. Allowing the text to be all the same case
uniformly, without capitalization, simplifies it for
further splitting of input into meaningful parts,
which we can use for analysis.

• Lemmatization and Stemming: Keywords are
often reduced to their root or base form, which
can be facilitated by lemmatization and stemming,
these are two techniques used in NLP. When
stemming, the prefixes and suffixes are removed
from a word to determine what it consists of by
contrast, lemmatization essentially depends on
word morphology and thus invites consideration
of context relying on grammar rules. Roman
Urdu users employ inconsistent spellings due to
phonetic-based writing, leading to variations such
as "nai," "nahi," and "nhe" (meaning "no"). To
address this, we standardize text by implementing
spelling correction rules and phonetic mappings.
Our approach ensures that variations of the
same word are normalized, improving feature
consistency and classifier performance. In
addition, it may gowithout saying that one lemma
varies greatly because it is named for it to be
pointed out in the singular or plural case.
Word: "khana" (to eat) Stemmed: "kha"
Explanation: The stem of "khana" is "kha".
Word: "chaliye" (let’s go) Lemmatized: "chalna",
Explanation: The lemma of "chaliye" is "chalna",
which is the infinitive form of the verb "to go".

3.4 Designing of stance detection algorithm
Creating a model that can recognize the stance
stated in the comments toward the tweet text, such
as agree, disagree, or unrelated, is a necessary
step in designing a stance identification method.
Preprocessing, feature extraction, data collection, and
the selection of appropriatemachine learning and deep
learning algorithms are usually steps in this process,
which are explained in section 5.

3.5 Feature extraction & adding additional features
to dataset

After preparing a dataset, additional features are
included in the dataset, data annotation, and inclusion
of further features. Feature extraction is concerned
with selecting the essential characteristics from
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Table 2. Roman Urdu stance dataset.
S.No Tweet ID Tweets Comment Bag-of-Wc Named En POS Tags Dependen Source Stance (Ta) Stance Ser Sentiment Score

1 2901 @BBhutto @User78 @BBhutto @BBhutto Noun(@B Root: dem Twitter Disagree Negative -1
2 2760 @ImranK @User123 @ImranK ImranKha Noun(Cor Root: COV Twitter Disagree Negative -1
3 3522 "@Maryam "#Maryam PMLN PMLN Noun(PM Root: kiya Twitter Agree Positive 1
4 2925 @Maryam @User567 @ImranK @ImranK Noun(@l Root: logo Twitter Disagree Negative -1
5 2954 @BBhutto @User78 @BBhutto BBhuttoZa Noun(Edu Root: Edu Twitter Disagree Negative -1

8372 4529 @NawazS @ZainabK zindagi sa zindagi Noun(zin Root: Wel Twitter Agree Positive 1
8373 7520 @Profess @User292 Zindagi re Zindagi Noun(Zin Root: karn Twitter Unrelated Neutral 0
8374 4549 @NawazS @ZainabK zindagi sa zindagi Noun(zin Root: Wel Twitter Agree Positive 1
8375 2962 @ShahidK @User101 @ShahidK ShahidKha Noun(Sar Root: Ecor Twitter Disagree Negative -1
8376 7455 @AkramK @User101 Wazir-e-A Wazir-e-A Noun(Wa Root: raay Twitter Unrelated Neutral 0

the provided unprocessed data and consequently
lessening the dimensionality of the dataset so the
model can more easily identify meaningful patterns.
The next step involves data annotation, which refers
to the labeling of data with relevant tags or categories,
which assists the model in identifying various factors.
It is critical to ensure that data is accurately labeled
because it will severely affect the output. Further
adding of more features could assist in enhancing
the model’s formative capabilities by enabling it to
identify patterns and connections. Therefore, all these
steps contribute to turning unprocessed data into
appropriate machine-learning inputs.

3.6 Stance tag output and performance evaluation
It contains the stance target labels (agree, disagree, or
unrelated) that are predicted by applying an algorithm
for every input text and evaluating on how accurate
this process is. The output of the stance tag is the
final result, which classifies an algorithm and suggests
how it detects stances for each piece of text. We
conduct the performance evaluation based on accuracy,
precision, recall, and F1-score to illustrate how well an
algorithm is performing. We have used it to establish
the trustworthiness of an algorithm, as well as to help
identify avenues for improvement our stance detection
model can correctly and repeatedly classify stances
across texts.
Performance evaluation: Model testing checks various
classifier’s performance to check the most effective
classifier for a given dataset.
Confusion Matrix: The confusion matrix is a basic
tool for assessing the adequacy of the classification
model. It is a tabular representation of how the model
predictions compare with the true/actual class labels
from the training set and predicted labels of each class.
Accuracy: This is a measure of the general correct
classification of the model prediction. It is defined
as the ratio of the number of correct predictions to
the total predictions on a dataset. While low accuracy

suggests the model might be incorrectly identifying
some of the occurrences, high accuracy indicates
accurate prediction in all classes. The accuracy
calculation formula is provided below.

Accuracy =
number of correct predictions
total number of predictions (1)

Precision: The ratio of correctly predicted (positive
instances) to all of the model’s predicted (positive
instances) is known as precision. It demonstrates
the model’s ability to avoid misclassification and false
positives. The precision calculation formula is given
below.

Precision =
correctly predicted instances (predicted class labels)
total predicted instances (predicted class labels)

(2)
Recall: The true positive rate or recall or sensitivity is
equal to the total number of actual classified (actual
class labels) positive cases over the sum of difference
of the total number of real class label positive cases
over the total number of actual classified (actual class
labels) positive cases. It is shown that the model can
identify positive instances with high accuracy and
ignores incorrect negative instance class detections. In
the case of a model with high recall, it is highly likely
to catch the majority of the positive instances, and low
recall means it is most likely to miss a large percentage
of positive instances. Recall can be determined using
the following formula.

Recall = correctly classified instances (correctly classified class labels)
total actual classified (actual class labels)

(3)
F1 Score: The F1 score is the harmonic mean of
precision and recall—the balance of the two. However,
F1 score takes into account both false positives and
false negatives in particular, hence it’s the right metric
to evaluate unbalanced dataset. The F1 score is
achievedwhen themodel has themaximumevaluation
of false positives and false negatives by incorporating
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high precision and recall. The F1-score calculation
formula is below.

F1-Score =
precision× recall
precision+ recall (4)

4 Result and discussion
4.1 Tool and language
The cloud-based platform we utilized, Google Colab
(short for Google Colaboratory), enables users to
develop and run Python code through the browser
itself. Featured free virtualmachineswith libraries and
frameworks most commonly used in machine learning
and data analysis (TensorFlow, PyTorch Scikit-Learn).
In general, it is a nice and easy way to use some of the
most popular tools for collaborative programming in
data science and machine learning projects.
The research work has been done in Python
language, well recognized as a powerful and efficient
programming language due to its simplicity and ease
of writing. It is employed extensively in different
areas like web development, data analysis, and AI.
Python is most likely a first option among developers
because of its ease of syntax and vast library support
for building many different types of applications.

4.2 Dataset splitting
Our dataset was separated into testing and training
sets. By evaluating the results, the model is assessed
on the testing set.
Training Data: 80% of the data used to train themachine
learning and deep learning models is included in this
slice of the dataset.
Testing Data: Finally, the remaining 20% of the data
set is built from completely independent data and
is used to evaluate how well the finished model
performed after training. Thismethodwill reliably and
impartially assess the model’s capability to forecast
and generalize untested new data. So, it ensures that
the model is able to do the stated task of forecasting in
realistic and useful situations.

4.3 Applyingmachine learning classifiers formodel
training

We build our model by training it with machine
learning classifiers. We then proceed to apply machine
learning classifiers that classify stances based on input
features so as to solve different types of real-world
problems across multiple domains. Which learn
patterns and relationships in data that contain labels

in datasets. These classifiers have their own strengths
and weaknesses, as well as freedom in data type
related to the task. Usually, it consists of several stages,
such as model training, hyperparameter modification,
and model evaluation using various metrics, such as
accuracy, precision, recall, F1 score, etc.

4.3.1 Applying logistic regression
Logistic regression is a popular supervised machine
learning statistic and statistical classification method.
Based on the sigmoid or softmax function trying to find
the relation between input features and target classes,
it predicts the probability that the observation will
belong to some certain class. Relatively, it is simple,
efficient, and easy to understand, and commonly
used because of it. Logistic regression is used in
the context of using the tweets and comments in
RomanUrdu political tweets and comments in order to
classify the tweet and comment into one of three stance
categories: "Agree," "Disagree," and "Unrelated." The
technique works by employing TF-IDF technique to
extract features from Roman Urdu text and have the
likelihood of the comment being of each posture class.
Below is the formula for the model’s forecast, which is
tied to the highest probability class.

P (y = 1 | X) =
1

1 + e−z
(5)

where:
• Z = β0 + β1X1 + β2X2 + · · ·+ βnXn

• P (y = 1 | X) gives the probability that the output y
belongs to class 1 ("agree") given the input features
X .

• Z is the linear combination of the input features X
weighted by their corresponding coefficients β.

• β0 is the intercept (bias), which acts as a baseline
probability.

• β1, β2, . . . , βn are the learned weights for each
feature. These values are learned during training
to minimize the classification error.

• X1, X2, . . . , Xn are the input features (e.g., TF-IDF
vector values).

The prediction was calculated for the class with the
highest probability.
Classification Result of Logistic Regression:
Performance of the model on Agree, Disagree,
and Unrelated across precision (positive predictions),
recall (actual positives), and F1 Score. This includes
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the support (number of actual instances per class),
overall accuracy, and macro & weighted averages for
aggregate metrics. As shown in Table 3.

Table 3. Classification result of logistic regression.
Class Precision Recall F1-score Support
Agree 0.91 0.91 0.91 583
Disagree 0.93 0.95 0.94 602
Unrelated 0.96 0.93 0.94 490
Accuracy 0.93 1675
Macro Avg. 0.93 0.93 0.93 1675
Weighted Avg. 0.93 0.93 0.93 1675

4.3.2 Applying decision tree classifier
Decision tree is a popular supervised machine
learning approach since the interpretability and
user friendliness are obvious for classification and
regression tasks. It builds a tree like structure
representing decisions and various outcomes of each
decision. The tree is constructed with three key
components: internal nodes, branches, and leaf nodes.
An internal node is a feature (or attribute) from the
dataset over which to decide, whereas an internal node
represents such feature. Internal nodes have branches
that are possible outcome or condition in terms of that
feature. The leaf nodes finally correspond to the output
value, which most often is the prediction or final value
in the case of classification problems, or the final value
for regression.

In stance detection, Roman Urdu political tweets and
comments are analyzed using Decision Tree to identify
stance of comments regarding a target tweet into three
categories agree, disagree and unrelated. This can
be achieved by splitting the data iteratively based
on the features derived from the text: specifically,
words, phrases and their TF-IDF indexes (scores).
It proceeds by taking in turn, and for each step,
choosing the feature and splitting condition which
best discriminates that data into purer subsets, where
purer means mainly having instances of one stance
class. Suppose the keyword in question is present
in a comment, then it is an indication of agreement,
and its absence is either an indication that the author
disagreed on the topic or thought otherwise. While
this procedure continues until the tree stops at some
stopping condition like minimum number of samples
per node or maximum depth.

Entropy:

Entropy(S) = −
∑

pi log2(pi) (6)

Table 4. Classification result of decision tree classifier.
Class Precision Recall F1-score Support
Agree 0.91 0.90 0.91 583

Disagree 0.94 0.93 0.93 602
Unrelated 0.92 0.94 0.93 490
Accuracy 0.92 1675
Macro Avg. 0.92 0.92 0.92 1675

Weighted Avg. 0.92 0.92 0.92 1675

Information Gain:

IG(S,A) = Entropy(S)−
∑ |Sv|
|S|
· Entropy(Sv) (7)

Split on the feature with the highest information
gain (IG). Stop at the maximum depth or when the
minimum number of samples is reached. Each leaf
node predicts the majority stance among the samples
it contains (i.e., agree, disagree, or unrelated).
ClassificationResult ofDecisionTreeClassifier: The
performance metrics that have been calculated by a
decision tree after it predicts the class labels for a test
dataset are its classification results. Precision, recall,
F1-score, and accuracy of these metrics is an indicator
of how well the model classifies the instances as per 3
categories. Every metric measures this aspect of the
model’s performance and, in a rigid sense, there is
no competition between them. For the dataset with
the three classes (Agree, Disagree, and Unrelated) the
Decision Tree model classification performs very well
in all the metrics. With an accuracy of 92% (i.e. 92 out
of all the cases in the dataset were correctly classified
by the model), the model indicates. The classification
results of the Decision Treemodel in terms of precision,
recall, and F1-score for each stance class are shown in
Table 4.

4.3.3 Applying support vector machine (SVM) classifier
Support Vector Machine (SVM) is a very powerful
supervisedmachine learning approach that works best
for either classification or regression applications. It is
particularly suited for high dimensional data and finds
the best hyperplane for the data points to be divided
into separate classes. The key is for SVM to maximizes
the margin, i.e. the separation of the hyperplane and
the closest support vectors (data points) from each
class. The generalization and classification accuracy
are improved by maximizing this margin.
SVM operates to classify Roman Urdu tweets into
the three categories, agree, disagree and unrelated,
in our research for stance detection. The algorithm
works on the input features created using TF-IDF etc.,

89



IECE Transactions on Advanced Computing and Systems

Table 5. Classification result of support vector machine.
Class Precision Recall F1-score Support
Agree 0.93 0.90 0.92 583

Disagree 0.93 0.96 0.95 602
Unrelated 0.94 0.94 0.94 490
Accuracy 0.94 1675
Macro Avg. 0.94 0.94 0.94 1675

Weighted Avg. 0.94 0.94 0.94 1675

and converts them into a high dimensional space. It
provides a decision boundary that most well separates
the stance categories. This is mainly due to SVM’s
capability to handle complex data distribution even in
nonlinear scenarios; thus, it is a reliable choice over text
classification. SVM makes use of kernel functions to
adapt to the details of Roman Urdu text, dealing with
linguistic diversity and minor variations in stance. Its
scalability and precision at classifying nuanced textual
data makes it a useful stance detection tool in political
tweets because classified agree, disagree or unrelated
sentiments are important to detect.
Objective Function:

min
1

2
‖w‖2 subject to yi(w · xi + b) ≥ 1 (8)

Kernel Function:

K(xi, xj) = θ(xi) · θ(xj) (9)

Decision Function:

F (x) = sign(w · x+ b) (10)

Classification Result of Support Vector Machine:
A Support Vector Machine yielded these numbers
to demonstrate its testing set performance through
accuracy, precision, recall, and F1 score measures.
Table 5 demonstrates the scores acquired by the SVM
classifier when used to predict stances in Roman Urdu
tweets.

4.3.4 Applying random forest classifier
Our research made use of Random Forest algorithm as
a flexible ensemble learning technique for classification
problems. The training process of Random Forest
includes building multiple decision trees which
collectively generate combined results to boost
accuracy levels. The final classification decision
combines the predictions of individual trees through
majority voting from all constructed trees. The
combination of multiple decision trees using this
approach leads to better generalization performance
and enhances the overall robustness for the model.

We used Random Forest to analyze Roman Urdu text
for stance detection by training multiple decision trees
along with features based on TF-IDF values and word
frequencies to determine whether tweets agreed or
disagreed with the topic. All decisions made by
singular trees combine their predicted classifications
through majority voting to determine the final stance
for individual tweets. This method creates highly
accurate stance predictions.
Entropy:

Entropy(S) = −
∑

pi log2(pi) (11)

Information Gain:

IG(S,A) = Entropy(S)−
∑ |Sv|
|S|
·Entropy(Sv) (12)

Final Prediction:

Prediction = Majority Vote(Tree1,Tree2, . . . ,Treen)
(13)

where Treei is the prediction from the i-th decision
tree.
Classification Result of Random Forest:

The classification result of the Random Forest classifier
provides a classification report that gives us an
exhaustive detail of how well the model performed
in terms of precision, recall, F1-score and support for
each class. Results are presented in Table 6.

Table 6. Classification result of random forest.
Class Precision Recall F1-score Support
Agree 0.96 0.92 0.94 583

Disagree 0.94 0.96 0.95 602
Unrelated 0.94 0.96 0.95 490
Accuracy 0.95 1675
Macro Avg 0.95 0.95 0.95 1675

Weighted Avg 0.95 0.95 0.95 1675

4.3.5 Applying naïve bayes classifier
The probabilistic supervised learning algorithm
Naïve Bayes Classifier functions as our model for
classification work. The Bayes theorem calculates
class probability using features while making the
assumption that each feature remains independent
from other features. Naïve Bayes offers an excellent
text categorization solution because it remains effective
even though the independence assumption does
not precisely hold true therefore serving as a good
choice for high-dimensional data processing. We
employ Naïve Bayes to identify Roman Urdu text
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Table 7. Classification result of naïve bayes classifier.
Class Precision Recall F1-score Support
Agree 0.84 0.89 0.86 583

Disagree 0.90 0.87 0.89 602
Unrelated 0.94 0.91 0.93 490
Accuracy 0.89 1675
Macro Avg. 0.89 0.89 0.89 1675

Weighted Avg. 0.89 0.89 0.89 1675

stances which leads to classification into the three
categories of "Agree," "Disagree," or "Unrelated." An
evaluation of probabilities shows which stance class
is most likely based on the selected features which
include word frequencies or TF-IDF values within
the algorithm. The combination of prior probabilities
and class-related likelihood distributions supports
Naïve Bayes in executing quick and efficient tweet
classification based on stance.
Bayes’ Theorem:

P (Ck | X) =
P (X | Ck) · P (Ck)

P (X)
(14)

Classification:

Ĉ = argmax
Ck

P (Ck)

n∏
i=0

P (xi | Ck) (15)

By applying Naïve Bayes, the stance detection
classification achieves quick and reliable classification
of Roman Urdu tweets into meaningful categories,
contributing to improved analysis of user-generated
content.
Classification Result of Naïve Bayes Classifier:

The Naïve Bayes Classifier’s classification result is a
gauge of how successfully it labels dataset occurrences.
The key metrics for predicting ability accuracy,
precision, recall, and F1-score are shown in Table 7.

4.4 Applying deep learning model
The advanced artificial intelligence method deep
learning depends on networks of artificial neural layers
to manage and analyze large datasets. The automatic
analysis of raw input data through deep neural
networks facilitates their designation as deep neural
networks which lack requirements for manual feature
extraction procedures. Deep learning’s method based
on human brain architecture effectively completes
complex pattern identification and abstraction
together with autonomous decision-making tasks

and natural language processing as well as picture
and speech recognition and predictive analytic tasks.
Deep learning solves real-world problems accurately
through its nonlinear pattern recognition abilities
across multifaceted datasets. The innovation in
various domains including healthcare and finance and
robotics as well as others depends on deep learning
through the usage of large-scale datasets along with
contemporary technology frameworks comprising
GPUs and TPUs. Although various deep learning
models were studied, RoBERTa was selected due to its
optimized architecture and superior performance in
stance classification. Models such as BERT and LSTMs
were excluded as they exhibited lower accuracy on
Roman Urdu text and required higher computational
resources. Future research will focus on exploring
alternative transformer-based architectures to further
enhance classification accuracy and efficiency.

4.4.1 Dataset augmentation
Data augmentation is a technique used to artificially
increase size and diversity of a dataset through
applying many modifications on the original data
in machine learning and deep learning. Rotation,
flipping, cropping, scaling, added noise, and color
adjustments are these kinds of transformations (like
rotation, flipping, cropping, scaling, added noise,
and color changes, etc.) to maintain the underlying
patterns and labels under variation. Thus, this method
improves the quality and generality of models by
enhancing the dataset with new augmented samples
and increases robustness and is reliable in situations
when the initial dataset is limited. In the domains
of computer vision, natural language processing,
audio analysis, data augmentation is widely used to
provide richer and more complete training datasets. A
comprehensive analysis of political stance distribution
was conducted to ensure equitable representation of
diverse political perspectives. To mitigate bias, data
augmentation and class balancing techniques were
implemented, preventing the overrepresentation of
any single political group. Thesemeasures enhance the
fairness and reliability of stance classification models.

4.4.2 Applying RoBERTa Model
A powerful natural language processing model called
RoBERTa (A Robustly Optimized BERT Pretraining
Approach) is based on the BERT (Bidirectional
Encoder Representations from Transformers)
architecture. It improves upon BERT by optimizing
the training procedure, using larger datasets, and
removing certain constraints from the original design.
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RoBERTa employs dynamic masking, where the
masked tokens in the input are changed during each
training epoch, enhancing its ability to generalize.
Additionally, it removes the Next Sentence Prediction
(NSP) assignment, concentrating only on the goal of
masked language modeling to enhance contextual
awareness. With larger batch sizes, extended
training steps, and diverse pretraining corpora,
RoBERTa achieves state-of-the-art performance across
numerous NLP tasks, such as text classification,
sentiment analysis, and question answering. This
robust model highlights the importance of fine-tuning
pretraining strategies to maximize the potential of
transformer-based architectures.
We fine-tuned the RoBERTa model on our Roman
Urdu political tweets dataset to classify stance into
agree, disagree, or unrelated categories. The model
robust pretraining and ability to capture contextual
nuances in text allowed it to effectively handle the
informal and code-mixed nature of Roman Urdu. By
incorporating dataset augmentation, we achieved an
impressive accuracy of 97%, demonstrating RoBERTa’s
exceptional performance in stance detection tasks.
A comparative analysis with recent stance detection
studies reaffirms that transformer-based models
consistently outperform traditional classifiers in stance
classification. Our findings indicate that RoBERTa
achieves a notable improvement in precision and recall,
surpassing previous approaches in RomanUrdu stance
detection. Specifically, RoBERTa attains its enhanced
ability to capture contextual nuances and complex
linguistic patterns, making it a highly effective model
for stance classification tasks. The workingmechanism
of the RoBERTa model is defined as follows.
• Tweet: @MaryamNSharif: "PMLN ne sports ko

promote karne ka irada kiya hai."
• Comment: @BilawalBZardari: "@MaryamNSharif

PMLNsirf apnemufadat ke liye sports ko promote
kar rahi hai, mulk ke liye nahi."

• Goal: Classify the comment as Agree, Disagree,
or Unrelated to the tweet using RoBERTa.

Steps to Apply the RoBERTa Model While we
preprocess the text (e.g., tokenization, lemmatization,
and lowercasing), these steps are ignored by RoBERTa
itself because it uses its own tokenizer. Here’s how the
data looks:
Processed Tweet: "pmln ne sports ko promote karna ka
irada karna hai"

Processed Comment: "pmln sirf apna mufadat ka liye
sports ko promote karna hai mulk ka liye nahi"
(i) Input Preparation

The tweet and comment are combined into a
single sequence:
X = [CLS] "pmln ne sports ko promote karna
ka irada karna hai" [SEP] "pmln sirf apna
mufadat ka liye sports ko promote karna hai
mulk ka liye nahi" [SEP]

• [CLS]: Marks the start of the sequence.
• [SEP]: Separates the tweet from the

comment.
(ii) Tokenization and Embedding Generation

The input sequence X is tokenized using
RoBERTa’s subword tokenizer:
Tokens: ["pmln", "ne", "sports", "ko",
"pro", "##mote", ...]
RoBERTa converts these tokens into contextual
embeddings for all tokens, capturing semantic
relationships between the tweet and comment.

(iii) Attention Mechanism
RoBERTa’s self-attention mechanism compares
every tokenwith every other token in the sequence
to:

• Show how the tweet and the comment are
related.

• Focus on key words like "irada", "mufadat",
and "nahi" to detect disagreement.

(iv) [CLS] Token Embedding
After processing the sequence, RoBERTa generates
a special embedding for the [CLS] token:

ECLS = Contextual Representation of
Entire Sequence

This embedding encapsulates the relationship
between the tweet and comment.

(v) Classification Layer:
The [CLS] embedding is passed through a fully
connected layer to compute logits for each class
(Agree, Disagree, and Unrelated):

Z = [zagree, zdisagree, zunrelated]

Example logits: [−0.4, 2.5, 0.1].
The logits are converted into probabilities using
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the softmax function:

P (y|X) = softmax(Z) = P (y|X)

Example probabilities: [0.05, 0.92, 0.03].
Outcome

The model correctly classifies the comment as disagree
because it contradicts the tweet’s stance. By using
RoBERTa embeddings and an attention mechanism, it
effectively understands the context and nuances in the
Roman Urdu text.
Classification Result of RoBERTa Model

The classification report for the augmented dataset
using the RoBERTa model highlights its robust and
balanced performance in stance classification tasks.
The model gets a 97% overall accuracy rate, meaning
it correctly predicts the stance in 97% of cases across
all classes. The classification results of the RoBERTa
model, evaluated using precision, recall, and F1-score
across all stance categories, are summarized in Table 8.
The model achieved an overall accuracy of 97%,
demonstrating superior performance in detecting
stance from Roman Urdu tweets.

Table 8. Classification result of RoBERTa model.
Class Precision Recall F1-Score Support
Agree 0.98 0.93 0.95 2457

Disagree 0.95 0.99 0.97 2392
Unrelated 0.96 0.99 0.98 1850
Accuracy 0.97 6699
Macro Avg. 0.97 0.97 0.97 6699

Weighted Avg. 0.97 0.97 0.97 6699

4.5 Accuracy comparison of all classifiers
We evaluated the accuracy performance of various
classifiers in predicting stance labels, using metrics
such as accuracy, precision, recall, and F1-score
to determine the most suitable classifier for stance
detection. Among the tested models, the RoBERTa
deep learning classifier achieved the highest accuracy
at 97%, outperforming all other approaches. The
machine-learning algorithms Random Forest Classifier
followed with 95% accuracy, while Logistic Regression
achieved 93%. The Support Vector Machine (SVM)
recorded 94% accuracy, and the Decision Tree classifier
achieved 92%. The Naïve Bayes classifier performed
the worst, with an accuracy of 89%, which is
close to random guessing. We examine training
time, memory usage, and computational complexity
across classifiers to evaluate model efficiency. While

deep learning models like RoBERTa require more
processing power but provide better results, Random
Forest offers cheaper computational cost but lesser
accuracy. These results offer insight into the
trade-offs between classification performance and
efficiency. Misclassification primarily occurs in
sarcastic, ambiguous, and indirect statements, where
contextual cues are subtle and implicit. For example,
some disagree-labeled tweets were misclassified as
unrelated due to the absence of explicit negation,
making it challenging for the model to capture implicit
disagreement. This analysis highlights the need for
advanced sarcasmdetection techniques and contextual
embeddings, which could significantly enhance stance
classification accuracy in future research. The accuracy
comparison of these classifiers is illustrated in Figure 3.

Figure 3. Accuracy comparison of different classifiers.

The bar chart provides a comparative analysis of the
accuracy achieved by various classifiers for stance
detection in Roman Urdu political tweets. Among
the models evaluated, RoBERTa demonstrated the
highest accuracy of 97%, showcasing its capability to
handle complex linguistic structures and effectively
capture contextual semantics in text. Random
Forest achieved the second-highest accuracy at 95%,
followed by Support Vector Machine (SVM) with
94%. Logistic Regression and Decision Tree models
exhibited similar performance, achieving 93% and 92%,
respectively. Naïve Bayes recorded the lowest accuracy
at 89%, reflecting its limitations in dealing with the
informal and code-mixed nature of Roman Urdu. The
integration of dataset augmentation played a critical
role in improving model performance by increasing
data diversity and mitigating class imbalances,
enabling the classifiers, particularly RoBERTa, to
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generalize better to unseen data. These results
emphasize the effectiveness of RoBERTa combined
with augmented datasets for stance detection tasks.
We show the performance of each stance class
(agree, disagree, unrelated) through F1-scores instead
of using overall accuracy rates in our evaluation.
The F1-score provides a balance between precision
and recall in determining stance detection results.
The performance metrics show RoBERTa reaches an
F1-score of [X] for agree, [Y] for disagree, and [Z] for
unrelated conditions which demonstrate its excellence
at classification.

5 Conclusion
This research delves into the area of stance detection
over Roman Urdu tweets, its importance in the
formation of opinions of people on various software
repositories by categorically using different machine
learning and deep learning models. There were
preprocessing methods like TF-IDF that really
impacted classifier’s performance. Out of the tested
models, Logistic Regression, Decision Trees, SVM,
Random Forest, Naïve Bayes and RoBERTa turned
out as the best model with a good accuracy score
of 97% and then it is followed by Random Forest
with 95%. This shows the efficacy of applying
transformer-based models on the stance detection
tasks and also highlighting the role of preprocessing
in achieving the best model performance. The study
provides further insight into such stance detection in
social media context and moreover emphasizes the
importance of evaluation metrics including accuracy,
precision, recall and F1 score to evaluate effectiveness
of models. This research makes a contribution to
computational linguistics and is a guide to future work
in this area by providing insights on the strengths and
limitations of different approaches.
To further improve results, we propose exploring
novel feature engineering techniques, advanced
preprocessing methods, and leveraging the latest
deep learning frameworks, such as GPT-style models,
XLNet, or cutting-edge multilingual transformers like
XLM, for more accurate and robust stance detection
in future research. Stance detection is essential for
identifying misinformation and biased narratives on
social media. By analyzing stances on controversial
topics, this research enhances fact-checking systems,
political discourse analysis, and misinformation
mitigation strategies. Future studies will explore
hybrid approaches that integrate stance detection
with fake news classification to further improve

detection accuracy and reliability. Future studies will
investigate domain adaptation strategies to improve
model generalization on a variety of multilingual
datasets and social media platforms. Furthermore,
in order to enhance stance identification performance
beyond Roman Urdu datasets and guarantee greater
applicability and resilience in a variety of textual
settings, cross-domain training with linguistically
related low-resource languages will be examined
Additionally, investigating the impact of handling
code-switching and informal language in a more
comprehensive way could further enhance model
performance. Future work could also focus on
expanding the dataset to include a more diverse set
of political topics, improving the generalizability of
stance detection models, and developing tools that can
operate efficiently in low-resource languages beyond
Roman Urdu.
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