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Abstract
This paper proposes an improved object detection
algorithm based on a dynamically deformable
convolutional network (D-DCN), aiming to
solve the multi-scale and variability challenges
in object detection tasks. First, we review
traditional methods in the field of object detection
and introduce the current research status of
improved methods based on multi-scale and
variability convolutional neural networks. Then,
we introduce in detail our proposed improved
algorithms, including an improved feature pyramid
network and a dynamically deformable network.
In the improved feature pyramid network, we
introduce a multi-scale feature fusion mechanism
to better capture target information at different
scales. In dynamically deformable networks,
we propose dynamic offset calculations and
dynamic convolution operations to achieve dynamic
adaptation to the target shape and pose. We also
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validate our method by conducting experiments
on the datasets KITTI and Caltech. Finally,
we design a comprehensive loss function that
considers both location localization error and
category classification error to guide model training.
Experimental results show that our improved
algorithm achieves significant performance
improvements in target detection tasks, with higher
accuracy and robustness compared with traditional
methods. Our work provides an effective method to
solve the multi-scale and variability challenges in
target detection tasks and has high practical value
and prospects for general application.

Keywords: object detection, feature pyramid network,
multi-scale fusion, dynamic convolution, KITTI and Caltech.

1 Introduction
In the field of computer vision, object detection is
a key task that involves identifying and locating
single or multiple objects in an image. This
technology has a wide range of application scenarios,
including but not limited to autonomous driving,
video surveillance, human-computer interaction, and
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industrial automation. Especially in the fields of
autonomous driving and safety monitoring, object
detection plays a crucial role. For example, in
autonomous driving systems, accurate target detection
can not only identify vehicles, pedestrians, and
obstacles on the road but also interpret traffic signs
and signals to ensure driving safety. In the field of
video surveillance, target detection [1, 2] can help
the surveillance system effectively identify and track
specific targets, which is crucial for improving public
safety and preventing criminal activities.

Before deep learning became popular, object detection
mainly relied on hand-designed features and
traditional machine learning techniques. A common
method is to use sliding window technology with
feature descriptors such as SIFT (Scale Invariant
Feature Transform) [3], SURF (Speed-up Robust
Features) [4] or HOG (Histogram of Oriented
Gradients) [5]. Sliding window technology moves
windows of different sizes on the image, extracts
features on each window, and then uses a classifier
such as SVM (Support Vector Machine) [6] to identify
and classify targets.

For example, the HOG feature proposed by Dalal
and Triggs in 2005 combined with linear SVM was
one of the early benchmark methods for pedestrian
detection. The HOG feature captures the shape
information of the target by calculating the gradient
direction histogram of the local area of the image,
which is effective for single-scale pedestrian detection.
However, when the target size is variable or the
background is complex, the effect of this method will
drop significantly, because hand-designed features
often lack adaptability to complex changes. Although
object detection technology has made significant
progress, it still faces several challenges. Traditional
target detection methods work well in simple scenes
but often perform poorly in complex environments.

In the field of target detection, existing deep
learning methods for dealing with multi-scale and
variability problems mainly focus on improving
the network architecture to adapt to targets of
different scales. Feature Pyramid Network (FPN)
[20] is an effective solution. It achieves the fusion
of high-level semantic information and low-level
detailed information by establishing a top-down
information flow and generating feature maps at
different levels. In this way, the feature maps at
each level can correspond to targets of different
sizes, greatly improving the detection ability of small

targets. In addition, the deformable convolutional
network (DCN) [23] introduces learnable offsets
to enable the convolution kernel to adapt to the
specific shape and posture of the target, enhancing
the network’s adaptability to complex shape and
posture changes. The application of these technologies
significantly improves the model’s performance in
multi-scale and high-variability environments, while
also maintaining a high recognition rate for large-sized
targets. These advances not only solve the problems
encountered by traditional methods in complex scenes
but also promote the development of target detection
technology in a more efficient and accurate direction.

However, these existing deep learning methods
still have shortcomings in handling multi-scale and
variability objects. On the one hand, traditional
convolutional networks are usually sensitive to the
size of the input image, and their performance is often
affected when encountering targets with large size
changes. On the other hand, complex background
and environmental factors (such as lighting changes,
occlusions, and background clutter) can also reduce
detection accuracy. Therefore, developing a target
detection algorithm that can adapt to multi-scale
changes and have high environmental adaptability has
become a research hotspot.

This paper proposes an improved target detection
algorithm based on multi-scale and variability
convolutional neural networks. The algorithm is
specially designed with a multi-scale feature fusion
mechanism that can effectively integrate information
from different convolutional layers, thereby improving
the detection capabilities of small and large-sized
targets. At the same time, we introduced a variable
convolution structure, which dynamically adjusts
the convolution kernel parameters to cope with
different detection scenarios and enhances the model’s
adaptability to complex environments.

To verify the effectiveness of the proposed algorithm,
we conduct extensive experiments on three public
datasets, KITTI [8], NEXET and Caltech [14]. The
KITTI dataset is widely used for visual tasks related
to autonomous driving, and contains vehicle and
pedestrian detection data in a variety of traffic
scenarios; while the Caltech dataset focuses on
pedestrian detection, covering various pedestrian sizes
and complex background conditions. Through testing
on these two data sets, we not only demonstrated
the efficient performance of the algorithm in general
target detection tasks but also specifically verified
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its superiority in multi-scale and high-variation
environments.

Our contributions mainly include:

1 Developed a new multi-scale feature fusion
strategy, which significantly improves the
detection accuracy of targets of various sizes
by precisely controlling the integration of
information flow between different scales.

2 Designed a variable convolution module that
uses a learnable parameter adjustment strategy
to enable the network to automatically adjust
its feature extraction method according to the
characteristics of the target and environmental
conditions.

3 Comprehensive experiments are conducted
on KITTI and Caltech datasets, and the
results demonstrate that our model has
significant performance advantages over existing
technologies when handling target detection
tasks in multi-scale and complex environments.

Through these innovations, our algorithm not only
performs well on standard data sets but also
demonstrates its wide applicability and practical value
in practical application scenarios, providing new
technical solutions for target detection in complex
environments.

2 Related Work
In the field of target detection, with the continuous
advancement of technology, researchers have
developed a variety of complex methods to deal with
various challenges, especially for the detection of
multi-scale and deformed targets. These methods are
not only innovative in theory, but also show extremely
high efficiency and accuracy in practical applications.
Below is a detailed extended introduction to these
methods, divided into three main categories:
region-based methods, regression-based methods,
and structural optimization/enhancement methods.

2.1 Region-based Approach
R-CNN [11] extracts deep feature representations by
applying high-capacity convolutional neural networks
to each independent candidate region. Although this
method is effective, it is computationally expensive
and slow. Fast R-CNN [10] improves this process
and introduces a RoI pooling layer, which can
quickly extract the features of each region from a
unified feature map of the entire image, significantly

improving the speed and efficiency while passing
Using softmax instead of SVM simplifies the training
process. Faster R-CNN [30] further optimizes the
generation process of candidate regions by integrating
a Region Proposal Network (RPN), which can be
jointly trained with the detection network end-to-end,
further improving speed and accuracy. Mask
R-CNN [13]: Based on Faster R-CNN, a branch is
added to generate a pixel-level mask of the target,
which enables the model to not only perform target
detection but also perform more refined instance
segmentation. This method is particularly suitable
for application scenarios that require precise target
contour information, such as medical image analysis
and video editing.

2.2 Regression-based Approach
The regression-based method handles target detection
in a more intuitive and fast way, directly predicting the
location and category of the target on the entire image,
greatly improving the processing speed.

YOLO [29] series: Especially YOLOv1 to YOLOv4,
each generation has made significant improvements
based on the previous generation, such as deeper
networks, better feature utilization strategies, and
more efficient framework design. YOLO transforms
the target detection problem into a single regression
problem, achieving very fast detection speed, and
is very suitable for occasions that require real-time
processing. SSD [24]: This algorithm effectively
handles the multi-scale target detection problem by
predicting the location and category of the target
on multiple feature maps of different scales. The
design of the SSD allows it to achieve very good
speed performance while maintaining high accuracy.
EfficientDet [32]: This algorithm further balances
the depth, width, and input image resolution of
the network through compound scaling technology,
improving efficiency and accuracy. EfficientDet shows
excellent performance on multiple standard datasets,
especially on resource-constrained devices.

2.3 Structural Enhancement Approach
In order to adapt to changes in multi-scale and
target morphology, some methods improve the
adaptability and accuracy of the model through
structural optimization.

Feature Pyramid Network (FPN): By establishing
multi-level feature maps, each layer can extract
information at different scales. FPN can effectively
enhance the model’s detection capabilities for targets
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of various sizes. This top-down structure provides
rich semantic information and detailed information for
target detection. Deformable Convolutional Networks
(DCN): By allowing the shape of the convolution
kernel to dynamically adapt to the characteristics of
the input data, DCN provides the possibility to handle
irregularly shaped targets, which is difficult to achieve
in traditional convolutional networks. RetinaNet [21]:
By introducing Focal Loss, it solves the imbalance
problem of positive and negative samples often
encountered in target detection, especially when there
are a large number of easy-to-classify background
samples, and improves the detection performance of
small targets.

Each of the above methods has its own merits,
but what they have in common is that they have
greatly promoted the development of target detection
technology, improved the accuracy, speed, and
adaptability of detection, andmet the needs of different
platforms from mobile devices to high-performance
servers.

3 Methodology
To effectively address the challenges of multi-scale
and high variability, our research work introduces
two innovative techniques: improved feature pyramid
network (iFPN) and dynamically deformable
convolutional network (D-DCN). These methods
effectively address critical challenges related to size
adaptation and shape variation in target detection.
By employing precise mathematical formulations
and sophisticated network designs, they substantially
enhance the performance and adaptability of the
detection algorithm. The overall architecture of our
network is presented in Figure 1, and the process is
detailed in Algorithm 1.

3.1 Improved Feature Pyramid Network
In order to further improve the effect of multi-scale
target detection, we developed the improved
feature pyramid network(IFPN), which is a network
architecture specially designed to improve the
efficiency and quality of information fusion between
feature layers. IFPN not only comprehensively utilizes
features from different layers, but also introduces
a novel adaptive weight adjustment mechanism,
allowing the network to automatically adjust its
contribution to the final detection task based on the
importance of each layer’s features.

Semantic Score Assessment: The core of IFPN lies in
the semantic evaluation of each feature layer, which

Algorithm 1: D-DCN
Input: Feature Map x, WeightsWp,Wd,

Parameters θ, φ, γ, λ
Output: Detection Results
Initialize weightsW and parameters θ, φ, γ, λ;
for each feature map Fi in x do

Compute semantic score:
S(Fi) = σ(Conv(Fi,Ws) + bs);

Compute adaptive weight: wi = exp(γ·S(Fi))∑
j exp(γ·S(Fj))

;
end
Compute merged feature:
Fmerged =

∑
iwi × U(Fi, size);

for each position p in Fmerged do
Compute position offset:
∆p = θ × tanh(Conv(x,Wp));
Compute shape offset:
∆s = φ× σ(Conv(x,Wd));
for each kernel position pn in R do

Adjusted position: padj = p+ pn + ∆pn;
Adjusted kernel: Wadj = Conv(pn, θ, φ);
Convolution output:
y(p)+ = x(padj) ×Wadj;

end
end
return Detection Results

determines the weight of this layer in feature fusion.
The semantic evaluation is based on the assumption
that deeper networks usually capture higher-level
semantic information, which is especially important for
recognizing small-sized objects. We analyze the output
of each feature layer through a deep convolutional
network and calculate its semantic score. The process
can be expressed as:

S(Fi) = σ(Conv(Fi,Ws) + bs) (1)

where Fi is the feature map Conv of the i-th layer,
represents the convolution operationWs and bs are the
weight and bias of the convolution layer respectively,
and σ is usually a nonlinear activation function, such
as ReLU [12] or Sigmoid, to ensure the output The
score is within a reasonable range.

DynamicWeight Adjustment: Based on the semantic
score of each layer, we calculate dynamic weights to
adjust the influence of each layer’s features in the
fusion process. This dynamic adjustment mechanism
allows the network to automatically optimize the
feature fusion strategy based on different inputs,
thereby better-handling targets of various sizes. This
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Figure 1. A diagram of our overall network architecture.

process can be expressed as:

wi =
exp(γ · S(Fi))∑
j exp(γ · S(Fj))

(2)

where γ is a trainable scaling parameter used to
adjust the sensitivity of the softmax function, thereby
affecting the weight distribution of different feature
layers.

Feature Fusion Strategy: Using the calculated
weights, we perform a weighted fusion of features
from all layers to generate the final feature map for
object detection. This step is accomplished through
upsampling and weighted summation, ensuring that
all feature maps contribute to the final detection result.
The fusion process is:

Fmerged =
∑
i

wi · U(Fi, size) (3)

where U(Fi, size) is an upsampling operation, which
upsamples each feature map to a uniform size for
effective fusion.

Through this improved feature pyramid network
design, iFPN can more effectively utilize features from
different network depths and optimize the detection
capabilities of multi-scale targets. This not only
enhances the model’s sensitivity to small-sized targets
but also improves its ability to adapt to changes in
background complexity. In addition, the adaptive
characteristics of IFPN enable it to automatically adjust
the feature fusion strategy according to specific tasks
and data sets, further improving the versatility and
flexibility of the model. These properties make IFPN a
powerful tool for multi-scale object detection scenarios
ranging from simple to extremely complex.

3.2 Dynamically Deformable Convolutional
Network

In object detection, a dynamically deformable
convolutional network (D-DCN) is a novel technology
designed to solve the problem of irregular shape and
pose changes of objects. Traditional fixed convolution
kernels perform poorly in handling such changes
because they cannot adapt to the local structure and
shape changes of the target. In order to solve this
problem, D-DCN introduces a dynamic deformation
mechanism that enables the convolution kernel to
adjust dynamically according to the specific shape
of the target, thereby more accurately capturing the
detailed information of the target.

Dynamic Offset Calculation: In dynamically
deformable convolutional networks (D-DCN), the
calculation of dynamic offsets is one of the key steps.
These offsets allow the convolution kernel to adjust
dynamically according to the local structure and shape
changes of the target to more accurately capture the
detailed information of the target. We will introduce
the calculation process of position offset and shape
offset respectively.

Position Offset Calculation: The position offset is used
to adjust the position of the convolution kernel to
adapt to the position change of the target. This process
utilizes a convolutional layer and a nonlinear function
to generate position offsets. Expressed in the following
form:

∆p = θ · tanh(Conv(x,Wp)) (4)

where ∆p represents the position offset, θ is the
learnable parameter Conv represents the convolution
operation, and x is the input feature map Wp is the
weight of the convolution layer. Through this formula,
the network can learn the position offsets at different
positions based on the input feature map x.

Shape Offset Calculation: Shape offset is used to
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adjust the shape of the convolution kernel to adapt
to changes in the shape of the target. This process also
uses a convolutional layer and a nonlinear function to
generate shape offsets. The process can be expressed
as follows:

∆s = φ · σ(Conv(x,Ws)) (5)

where ∆s represents the shape offset, φ is the learnable
parameter, σ is a nonlinear activation function, Conv
represents the convolution operation, x is the input
feature map, andWs is the weight of the convolution
layer. Through this formula, the network can learn the
shape offsets at different positions based on the input
feature map x.

Through the calculated position offset and shape
offset, D-DCN can dynamically adjust the position and
shape of the convolution kernel during the convolution
operation, thereby better capturing the local structure
and shape changes of the target.

3.3 Dynamic Convolution Operation
The dynamic convolution operation in the dynamically
deformable convolutional network (D-DCN) is one
of its core components. It enables the network to
dynamically adjust the position and shape of the
convolution kernel according to the local structure and
shape changes of the target, thereby making it more
precise. Capture the characteristics of the target well.

Generation of Dynamic Convolution Kernel: In
dynamically deformable convolutional networks
(D-DCN), the generation of dynamic convolutional
kernels is a key task. In traditional convolution
operations, the weight of the convolution kernel is
fixed, but in D-DCN, the weight of the convolution
kernel is adjusted according to the dynamic offset to
adapt to the irregular shape and attitude changes of
the target.

Offset-based Dynamic Convolution Kernel:The
generation of dynamic convolution kernel is based
on the adjustment of offset. During the convolution
process, for each convolution kernel position p, it is
adjusted according to the learned offset to adapt to
the local structure and shape changes of the target.
Specifically, the weight W (pn, θ, φ) of the dynamic
convolution kernel can be calculated by the following
formula:

W (pn, θ, φ) = Conv(pn, θ, φ) (6)

where pn is the position index of the convolution kernel,
and θ and φ are learnable parameters, which are used

to control the dynamic adjustment of the convolution
kernel weight. Conv represents a convolution
operation. Through the learned parameters and input
featuremaps, dynamically adjusted convolution kernel
weights can be generated.

Dynamic convolution kernel has the following
advantages: 1) Strong adaptability: The weight of
the convolution kernel is adjusted according to the
learned offset so that the network can better adapt to
the irregular shape and posture changes of the target.
2) High flexibility: The weight of the convolution
kernel can be dynamically adjusted according to the
specific conditions of the target, to better capture the
characteristic information of the target.

Through the generation of dynamic convolution
kernels, the D-DCNnetwork can better adapt to targets
of various shapes and postures, thereby improving
the accuracy and robustness of target detection. The
calculation process of dynamic convolution operation
includes the following steps: 1) Position adjustment
of the convolution kernel: For each convolution kernel
position p, the position of the convolution kernel is
dynamically adjusted according to the learned offset
∆pn(θ, φ). 2) Convolution kernel weight adjustment:
Calculate the dynamically adjusted convolution kernel
weightW (pn, θ, φ) based on the adjusted convolution
kernel position and shape. 3) Calculation of
convolution output: For each convolution kernel
position p, use the dynamically adjusted convolution
kernel weight to perform a weighted sum to obtain
the convolution output value y(p). The process can be
described as:

y(p) =
∑
pn∈R

x(p+ pn + ∆pn(θ, φ)) ·W (pn, θ, φ) (7)

Through this operation, the D-DCN network can
dynamically adjust the position and weight of the
convolution kernel according to the local structure and
shape changes of the target, thereby better adapting to
the characteristics of the target.

3.4 Loss
When designing the loss function, we hope that
it can accurately reflect the difference between the
model predictions and the real labels and that it can
effectively guide the training process of the model. In
target detection tasks, we usually need to consider
two aspects of error: positioning error and category
classification error.
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Position Positioning Error loss function: The
location error loss function measures the difference
between the model’s prediction of the target location
and the true location. The commonly used positioning
error loss function is Smooth L1 Loss, which is a variant
of Huber Loss. It uses square loss for smaller errors
and absolute value loss for larger errors to reduce the
impact of outliers on training. This loss is expressed
as:

Lloc(l, l
∗) =

∑
i∈{N}

SmoothL1(li − l∗i ) (8)

where l is the target position parameter predicted by
the model, l∗ is the real target position parameter, and
SmoothL1(x) is the Smooth L1 Loss function.

Classification Error loss function. The classification
error loss functionmeasures the difference between the
model’s prediction of the target class and the true class.
A commonly used classification error loss function
is the cross-entropy loss function, which imposes a
greater penalty on incorrect classification predictions,
thereby prompting the model to learn more accurate
classifications. The loss function can be expressed as:

Lcls(c, c
∗) = −

∑
c′

c′∗ log(c) (9)

where c is the target category probability distribution
predicted by the model, c∗ is the true target
category label, and c′∗ is the predicted probability
corresponding to the true category label.

Comprehensive loss function design: To
comprehensively consider positioning error and
classification error, we can adopt the form of a joint
loss function when designing the loss function, taking
into account the errors in these two aspects at the
same time. A common approach is to perform a
weighted sum of the positioning error loss function
and the classification error loss function to obtain a
comprehensive loss function:

L = Lloc + λLcls (10)

where λ is the trade-off parameter between positioning
error and classification error, which is used to balance
the importance of the two in the training process.
By designing an appropriate loss function, we can
effectively guide the training of themodel and improve
the performance of the target detection task.

4 Experiments
4.1 Experimental Setting
For a fair comparison, all models were trained on a
server equipped with four NVIDIA A30 GPUs. We

Table 1. Experimental environment.
Parameter Configuration
CPU Intel Core i9-12700KF
GPU NVIDIA GeForce RTX A30 (24 GB)
CUDA CUDA 11.7
Python Python 3.9.13
Deep learning framework Pytorch 2.1.0
Operating system Ubuntu 22.04.2

Table 2. Model Parameters.

Parameter Value

lr 0.0002
Optimizer Adam
Batch Size 24
Weight Decay 0.0003
Epoch 350
Activation Function ReLU
Early Stop True

apply the Adam [18] optimizer with a learning rate
of 0.001. Batch Normalization [16] is used following
each parameter layer. A weight decay of 0.0001 is used
in both networks. Refer to Table 1 and Table 2 for a
comprehensive list of the parameters.

4.2 Datasets
KITTI dataset: The KITTI dataset is one of the
most popular datasets for use in mobile robotics
and autonomous driving. It consists of hours of
traffic scenarios recorded with a variety of sensor
modalities, including high-resolution RGB, grayscale
stereo cameras, and a 3D laser scanner. Despite its
popularity, the dataset itself does not contain ground
truth for semantic segmentation. However, various
researchers have manually annotated parts of the
dataset to fit their necessities.

NEXET dataset: The NEXET dataset, a widely
utilized video dataset in autonomous driving research,
encompasses data from over 77 countries and more
than 1,400 cities. It includes footage captured under
three different lighting conditions (day, night, and
twilight) and across all four seasons. The dataset
also features diverse road types, such as urban, rural,
highway, residential, and desert roads, as well as
various weather conditions, including clear skies, fog,
rain, and snow. With its high-quality video clips and
detailed annotations, NEXET serves as an excellent
resource for evaluating our method.

Caltech dataset: The Caltech dataset is a widely
used dataset for object recognition tasks and contains
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Figure 2. Visualization results on KITTI dataset.

Table 3. Experimental results on the KITTI dataset.

Model Time Cars Pedestrians Cyclists
Easy Mod Hard Easy Mod Hard Easy Mod Hard

LSVM-MDPM-sv [9] 10s 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21
DPM-VOC-VP [28] 8s 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

SubCat [26] 0.7s 84.14 75.46 59.71 54.67 42.34 37.95 - - -
3DVP [35] 40s 87.46 75.77 65.38 - - - - - -
AOG [19] 3s 84.80 75.94 60.70 - - - - - -

Faster-RCNN 2s 86.71 81.84 71.12 78.86 65.90 61.18 72.26 63.35 55.90
CompACT-Deep [37] 1s - - - 70.69 58.74 52.71 - - -

DeepParts [33] 1s - - - 70.49 58.67 52.78 - - -
FilteredICF [38] 2s - - - 67.65 56.75 51.12 - - -
pAUCEnsT [27] 60s - - - 65.26 54.49 48.60 51.62 38.03 33.38
Regionlets [34] 1s 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83
3DOP [22] 3s 90.03 88.64 76.11 81.78 67.47 64.70 78.39 68.94 61.37

SDP+RPN [36] 0.4s 90.14 88.85 78.38 80.09 70.16 64.82 81.37 73.74 65.31
Ours 0.4s 93.04 89.02 79.10 83.92 73.70 68.31 84.06 75.46 66.07

approximately 9000 images from 101 object categories.
The categories were chosen to reflect the variety of
objects in the real world, and the images themselves
were carefully selected and annotated to provide
a challenging benchmark for object recognition
algorithms.

4.3 Evaluation Methods
We start with an evaluation of the proposal network.
Following literature [15], prediction callbacks are used
as a performance metric. To be consistent with KITTI’s
setting, the ground truth is considered recalled if the
intersection over union (IoU) ratio of the bestmatching
proposal is higher than 70% for cars and higher than
50% for pedestrians and cyclists. These benchmarks

were chosen because, unlike VOC [7] and ImageNet
[31], they contain many small objects. Typical image
sizes for KITTI and Caltech are 1250x375 and 640x480
respectively. KITTI contains three categories of objects:
cars, pedestrians, and cyclists, and three assessment
levels: easy, medium, and hard. The "medium"
level is the most commonly used. A total of 7,481
images are available for training/validation, and 7,518
for testing. Since no ground truth is available for
the test set, we follow the recommendation of [22]
and split the training validation set for training and
validation. In all reduction experiments, the training
set is used for learning and the validation set is used
for evaluation. Next, models were trained separately
for car detection and pedestrian/bicycle detection. A
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Figure 3. Comparison with state-of-the-art methods on the KITTI dataset.

Figure 4. Results on NEXET dataset. a: SubCat. b: 3DVP. c: AOG. d: DeepParts. e: Regionlets. f: FilteredICF. g: Ours.

model for pedestrians was learned on Caltech.

4.4 Results
The results on theKITTI:Comparisonswith previous
methods are shown in Table 3 and Figure 3. We set
a new record for detecting pedestrians and cyclists.
Columns “Pedestrians-Mod” and “Cyclists-Mod” are
6 and 7 points higher than 3DOP respectively, and
perform better than Faster-RCNN, Regionlets, etc.
We also achieved considerable lead on the very new
SDP+RPN using scale-dependent pooling. In terms of
speed, this network is quite fast. For the largest input
size, our detector is approximately 8 times faster than
3DOP. On the original image (1250x375), the detection
speed reaches 10fps. Figure 2 shows our visualization
results.

The results on the NEXET: Table 5 offers a thorough
comparison of the performance of various methods
on the NEXET dataset. Our method stands out with
impressive metrics, achieving 75.07% in Precision,
72.37% in F1 Score, 73.67% in mAP@0.5, and
operating at 127 FPS. These results underscore
the reliability and effectiveness of our approach in
different scenarios. Additionally, qualitative outcomes
presented in Figures 4 and 5 illustrate that our method
performs exceptionally well in real-world applications.
In summary, our approach has led to significant

advancements in both speed and accuracy.

Detection on Caltech: Our detector is also evaluated
on the Caltech pedestrian benchmark. The model
is compared with methods such as DeepParts,
CompACT-Deep, CheckerBoard, LDCF, ACF [25],
and SpatialPooling, covering three tasks: Reasonable,
medium, and partially obscured. As shown in Figures
6 and 7, our method demonstrates state-of-the-art
performance. It performs exceptionally well on small
and moving targets objects, surpassing DeepParts,
which specifically addresses the occlusion problem.

4.5 Ablation Study
Effect of input upsampling: Table 4 shows that input
upsampling can be a key factor in detection. Significant
improvements can be achieved by upsampling the
input by a factor of 1.5 to 2, but we found that gains
beyond 2x are small. This is smaller than the 3.5x
factor required by literature [39]. Larger factors cause
detection to be significantly slower and require more
memory.

Sampling strategies: Table 4 compares the sampling
strategies: random and mixture. For cars, the three
strategies are similar; for pedestrians, the bootstrap
and hybrid strategies are similar, but the random
strategy is significantly worse. Note that random
sampling has more false positives.
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Figure 5. Visualization results on NEXET dataset.

Figure 6. Visualization results on Caltech dataset.

CNN feature approximation: We tried three methods
to learn deconvolution layers for feature map
approximation: 1) weights with bilinear interpolation;
2) weights initialized by bilinear interpolation and
learned by backpropagation; 3) weights initialized
by Gaussian noise and learned by backpropagation.
We found that the first method works best, which
confirms the research results of [17]. As shown in
Table 4, deconvolution layers help in most cases. The
gains are greater for smaller input images, which
tend to contain smaller objects. It is worth noting
that the computational complexity of feature map
approximation is very small and does not increase
parameters.

Object Detection via Proposal Networks: Proposal
networks can act as detectors by converting
class-agnostic classification into class-specific

classification. Table 4 shows that although not as
powerful as the unified network, it achieves quite
good results, which are better than some detectors on
the KITTI rankings.

5 Conclusion
This paper proposes an improved object detection
algorithm based on Dynamically Deformable
Convolutional Networks (D-DCN), which achieves
remarkable results through in-depth study of
multi-scale and variability challenges in object
detection tasks. Our improved algorithm makes full
use of the advantages of deep learning technology,
innovates in feature extraction and network structure
design, and effectively improves the accuracy and
robustness of target detection. In the experimental part,
we verified it on two commonly used target detection
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Table 4. Results of the ablation studies. Where 1.5, 2 and 3.5 represent the sampling ratio, random andmixture represent
the sampling method.

Model Times params Cars Pedestrians

Easy Mod Hard Easy Mod Hard
1.5 0.12s/0.10s 471M/217M 90.55 87.93 71.90 76.01 69.53 61.57
2 0.43s/0.38s 471M/217M 90.96 88.83 75.19 76.33 72.71 64.31
3.5 0.23s/0.20s 471M/217M 94.08 89.12 75.54 77.74 72.49 64.43

random 0.22s/0.19s 471M/217M 90.94 87.50 71.27 70.69 65.91 58.28
mixture 0.22s/0.19s 471M/217M 90.33 88.12 72.90 75.09 70.49 62.43
IFPN 0.24s/0.20s 352M/191M 92.89 88.88 74.34 76.89 71.45 63.50

D-DCN 0.22s/0.19s 344M/138M 90.49 89.13 74.85 76.82 72.13 64.14
Ours 0.19s/0.18s 103M/82M 82.73 73.49 63.22 64.03 60.54 55.07

Figure 7. Comparison with state-of-the-art methods on the Caltech dataset.

Table 5. Results on the NEXET dataset.

Method Precision F1 Score mAP@0.5 FPS

SubCat 52.36 53.59 53.58 14
3DVP 61.95 52.47 48.33 20
AOG 69.43 50.53 58.18 44
DeepParts 63.57 62.17 59.42 84
Regionlets 65.14 60.46 64.21 115
FilteredICF 69.13 65.39 67.27 99
Ours 75.07 72.37 73.67 127

data sets, KITTI and Caltech. The experimental
results show that our algorithm achieved significant
performance improvement in the target detection task.
Compared with traditional methods, our algorithm
performsmore robustly and accurately across multiple
scales and variability. The improved feature pyramid
network can effectively extract multi-scale target
features, while the dynamically deformable network
can achieve accurate detection based on changes in the
shape and posture of the target. The comprehensive
loss function effectively guides the training process of
the model and improves the generalization ability and
robustness of the model.

Overall, our work provides an effective method to
solve the multi-scale and variability challenges in
target detection tasks, with high practical value and
prospects for generalization and application. In the
future, we will further explore the application of deep
learning technology in the field of target detection,
continuously improve algorithm performance, and
improve the versatility and practicality of the model.
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