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Abstract
Traditional centralized machine learning
approaches for IoT botnet detection pose significant
privacy risks, as they require transmitting sensitive
device data to a central server. This study presents
a privacy-preserving Federated Learning (FL)
approach that employs Federated Averaging
(FedAvg) to detect prevalent botnet attacks, such
as Mirai and Gafgyt, while ensuring that raw
data remain on local IoT devices. Using the
N-BaIoT dataset, which contains real-world benign
and malicious traffic, we evaluated both the IID
and non-IID data distributions to assess the
effects of decentralized training. Our approach
achieved 97.5% accuracy in IID and 95.2% in
highly skewed non-IID scenarios, closely matching
centralized learning performance while preserving
privacy. Additionally, communication optimization
techniques—Top-20% gradient sparsification
and 8-bit quantization—reduce communication
overhead by up to 80%, significantly enhancing the
efficiency. Our convergence analysis further
shows that FedAvg remains effective under
non-IID conditions, thereby demonstrating its
robustness for real-world deployments. These
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results demonstrate that FL provides a scalable
and privacy-preserving solution for securing IoT
networks against botnet threats.
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1 Introduction
The proliferation of Internet of Things (IoT) devices
has transformed various domains including smart
homes, healthcare, and industrial automation.
However, this widespread adoption has introduced
significant cybersecurity risks, as botnet attacks
increasingly exploit vulnerable IoT devices for
malicious activities, such as Distributed Denial of
Service (DDoS) and reconnaissance activities [1–3].
Traditional centralized machine-learning approaches
for IoT anomaly detection require aggregating
sensitive device data on a central server, leading to
substantial privacy concerns and increasing the risk of
data breaches [4]. Furthermore, centralized training
is computationally expensive and often impractical
for resource-constrained IoT devices, thereby raising
scalability issues [5].
To address these challenges, Federated Learning (FL)
has emerged as a promising solution that enables
decentralized model training while retaining raw
data on local devices [6–9]. FL enhances privacy
preservation by ensuring that only model updates
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rather than raw data are shared with a central
aggregator. Among the various FL techniques,
FederatedAveraging (FedAvg) has gained prominence
because of its efficiency in distributed optimization and
reduced communication overhead [10].
However, applying FL to IoT botnet detection
presents several challenges including heterogeneous
non-IID data distributions, resource constraints,
and communication overhead. Addressing these
limitations requires optimized FL strategies
that improve both the model convergence and
computational efficiency. Although FedAvg serves as
a baseline, alternative approaches such as FedProx and
FedNova have been introduced to handle non-IID data
more effectively [33, 34]. A comparative discussion of
these approaches is necessary to assess their suitability
for IoT-botnet detection.

1.1 Relevance of the N-BaIoT Dataset
To evaluate the performance of FedAvg for IoT botnet
detection, we used the N-BaIoT dataset [11], which
is a real-world benchmark containing benign and
malicious network traffic from multiple IoT devices
infected with Mirai and Gafgyt botnets [12]. This
dataset provides diverse attack scenarios, making it
well-suited for assessing the robustness of FL-based
anomaly detection. An appropriate citation of the
dataset was included to ensure reproducibility.

1.2 Key Contributions
This study makes the following key contributions.
• A privacy-preserving FL framework using

FedAvg for IoT botnet detection is proposed,
ensuring that sensitive device data remains
localized.

• The impact of IID vs. Non-IID data distributions
on model accuracy, convergence speed, and
computational efficiency is analyzed.

• A 80% reduction in communication overhead
is demonstrated while maintaining comparable
detection accuracy to centralized approaches.

• Empirical evidence shows that FedAvg achieves
scalability up to 100 devices, maintaining 97.5%
detection accuracy in IID and 95.2% in Non-IID
settings.

The remainder of this paper is structured as follows.
Section 2 reviews related work on IoT botnet detection
and Federated Learning. Section 3 describes the
proposedmethodology, including data pre-processing,

model architecture, and FL implementation. Section 4
presents experimental results and performance
analysis. Section 5 discusses key findings, limitations,
and future research directions. Finally, Section 6
concludes this paper.

2 Related Work
Federated Learning (FL) has gained significant
attention as an alternative to traditional machine
learning, particularly in sensitive domains, such as
healthcare [13], finance [14], and IoT security [15].
This section reviews prior research in the areas of
FL for IoT security, FL for anomaly detection, and
botnet detection using FL and other machine learning
techniques, highlighting the key limitations of existing
studies.

2.1 Federated Learning for IoT Security
IoT networks present unique security challenges
because of their distributed nature, heterogeneous
devices, and constrained computational resources
[1, 2]. Traditional centralized machine-learning
solutions for securing IoT networks require raw data
aggregation, which increases the risk of privacy
breaches and scalability limitations [4, 15, 16]. FL has
emerged as an effective approach for mitigating these
risks by enabling decentralized model training while
maintaining data localized on edge devices [6, 7].
Konečný et al. [5] examined the advantages of FL
in securing IoT ecosystems, highlighting its potential
to preserve privacy while reducing communication
overhead. Yang et al. [17] conducted an extensive
survey on FL applications, emphasizing their role
in securing IoT networks without exposing raw
data. Additionally, techniques such as adaptive
aggregation [18], differential privacy [19], and secure
multiparty computation [20] have been integrated into
FL frameworks to enhance security.
However, most existing studies have focused on
general anomaly detection rather than evaluating FL
specifically for botnet threats. For example, Li et al.
[21] and Xu et al. [22] demonstrated FL’s effectiveness
of FL in anomaly detection but did not assess its
applicability to botnet detection. This study fills this
gap by evaluating FL specifically for botnet detection
using real-world botnet traffic data.

2.2 Federated Learning for Anomaly Detection
Anomaly detection is essential for IoT security because
it enables the identification of malicious activities
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such as botnet attacks, unauthorized access, and data
exfiltration [23, 24]. Several deep-learning-based
anomaly detection frameworks have been proposed,
but they often rely on centralized data collection,
which is impractical in privacy-sensitive environments
[4, 25].
Xu et al. [22] applied FL to medical anomaly
detection and demonstrated its ability to train robust
models while preserving data privacy. Similarly,
Mothukuri et al. [26] explored FL-based anomaly
detection for edge devices, illustrating its potential
to reduce computational load while maintaining
accuracy. Despite these advances, FL for IoT botnet
detection remains underexplored. Studies such as
[26] evaluated FL for general security threats, but
did not specifically consider the Mirai and Gafgyt
botnets, which are among the most prevalent IoT
botnet families. This study addresses this gap by
evaluating botnet detection using theN-BaIoT dataset
while also analyzing the performance under IID and
Non-IID data distributions.

2.3 Botnet Detection Using Federated Learning
The detection of botnet attacks in IoT networks has
been studied extensively, with existing solutions
leveraging traditional machine learning, deep learning,
and statistical methods [27, 28]. Conventional
approaches rely on network traffic analysis using
centralized models, which require significant
computational resources and exposure to sensitive
data [15, 24].
Meidan et al. [11] introduced the N-BaIoT dataset,
demonstrating the feasibility of deep learning-based
botnet detection. However, their study relied on
a centralized training approach, which limits its
real-world applicability. More recently, Popoola [29]
proposed an FL-based botnet detection framework,
showing that FL models can achieve accuracy levels
comparable to those of centralized models while
preserving privacy. Similarly, Xiong et al. [30] studied
FL for botnet detection under non-IID conditions,
highlighting the performance gap compared to IID
scenarios.
Unlike traditional signature-based and anomaly
based detection methods [31, 32], which require
frequent updates and retraining, FL is a promising
alternative. By continuously learning from distributed
attack patterns without centralized data collection
[6, 29], FL improves the adaptability to evolving botnet
threats.

2.4 Limitations of Existing Work
Despite the progress in FL-based botnet detection,
several challenges remain.
• Most FL-based IoT security studies focus

on generic anomaly detection rather than
botnet-specific threats. Although studies such
as [21, 22] addressed anomaly detection, they
did not assess the effectiveness of FL against
real-world botnet datasets, such asN-BaIoT [11].

• Few studies investigate Non-IID data challenges
in IoT botnet detection, significantly impacting FL
model performance. IoT devices generate highly
heterogeneous data, which leads to local model
biases that hinder global model aggregation [30].

• Communication efficiency and resource
constraints remain bottlenecks in deploying FL
at scale. While works such as [5, 18] proposed
optimizations, further improvements are needed
for real-world IoT networks.

This study directly addresses these gaps by:

• Evaluating FedAvg for botnet detection using
the N-BaIoT dataset, which includes real-world
botnet traffic from infected IoT devices.

• Investigating FL performance under IID and
Non-IID data distributions, explicitly analyzing
its impact on model accuracy and convergence.

• Proposing optimizations for improving
communication efficiency, specifically
employing gradient sparsification and
quantization techniques to reduce bandwidth
consumption.

3 Methodology
This section presents an approach to IoT botnet
detection using Federated Learning (FL) with
Federated Averaging (FedAvg). The dataset,
pre-processing pipeline, model architecture, FL
implementation, and experimental setup were
outlined.

3.1 N-BaIoT Dataset
The N-BaIoT dataset [11] is a benchmark dataset
containing the network traffic from IoT devices infected
byMirai andGafgyt botnets. The dataset includes the
following attack categories.
• DDoSAttacks: UDPfloods, TCP SYNfloods, and

ACK floods.
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• Reconnaissance Attacks: Network scanning and
port scanning.

Feature Selection and Preprocessing
The dataset originally containedmultiple network flow
features. The 115 most relevant features were selected
based on the following criteria:
• Domain Expertise: Features commonly used in

anomaly-based intrusion detection.
• Information Gain Ranking: Top-ranked features

based on entropy reduction.
• Correlation Analysis: Redundant or highly

correlated features were removed.
The pre-processing pipeline consists of the following
steps.
• Normalization: Min-max scaling was applied to

ensure feature values lie in [0,1].
• Train-Test Split: The dataset was partitioned into

70% training, 10% validation, and 20% testing.
• Non-IID Partitioning: Data was assigned to FL

clients using:
– IID (Independent and Identically
Distributed): Each client received a
random subset of data.

– Non-IID (Heterogeneous Distribution):
Clients were assigned device-specific data,
simulating real-world IoT environments.

3.2 Federated Learning Implementation
The FL framework was implemented using PyTorch
and Flower following the FedAvg algorithm [10].

Federated Learning Workflow
Federated Learning (FL) enables distributed training
across IoT devices without transmitting raw data
to a central server, thereby preserving the privacy.
The training process followed the iterative Federated
Averaging (FedAvg) mechanism.
Figure 1 illustrates the FL workflow, which consists of
the following steps.
• Global Model Initialization: The central server

initializes a global model and sends it to all FL
clients (IoT devices).

• Local Training: Each client trains themodel using
its local dataset without sharing raw data.

• Model Update Transmission: After training,
each client sends its model updates (weights) to
the central server.

• Model Aggregation (FedAvg): The server
aggregates received model updates using the
Federated Averaging (FedAvg) algorithm:

wt+1 =

K∑
k=1

nk

N
wt
k (1)

where:
– wt+1 is the globalmodelweight at round t+1.
– K is the number of participating clients.
– nk is the number of training samples at client
k.

– N is the total number of training samples
across all clients.

– wt
k is the local model weight of client k at

round t.
• Global Model Update: The aggregated model is

sent back to clients for the next training round.
• Convergence Check: The FL process continues

until the model reaches a predefined accuracy
threshold.

3.3 Model Architecture
The IoT botnet detection model is a deep neural
network (DNN) designed for the binary classification
of network traffic as either benign or botnet attacks.
The architecture balances the computational efficiency
and accuracy.
• Input Layer: 115 features extracted from network

traffic statistics.
• Hidden Layers:

– Layer 1 (128 neurons): ReLU activation and
Batch Normalization for stable training.

– Layer 2 (64 neurons): Reduces complexity
while maintaining feature abstraction.

– Layer 3 (32 neurons): Refines feature
representation before classification.

• Dropout Regularization: A dropout rate of 30%
is applied to prevent overfitting.

• Output Layer: Softmax activation function
classifies traffic as either benign (0) or botnet
attack (1).
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Figure 1. Federated learning workflow.

Figure 2 illustrates the proposed neural network
architecture for botnet detection. The model consists
of an input layer (115 features), three hidden layers
with ReLU activation and batch normalization, and a
softmax output layer for binary classification. Dropout
layers (30% rate) are applied after each hidden layer
to mitigate overfitting.

3.4 Experimental Setup
Hardware and Software Environment
The experiments were conducted as follows:

• Hardware: NVIDIA RTX 3090 GPU, 32GB RAM,
Intel i9 CPU.

• Software: Python 3.8, PyTorch 1.10, Flower FL
framework.

Federated Learning Hyperparameters
The following hyperparameters were chosen based on
empirical tuning:
• Clients: 10 IoT devices.
• Rounds: 100.
• Local Epochs: 5 per round.
• Batch Size: 32 samples.
• Learning Rate: 0.01 (Adam optimizer).

Evaluation Metrics
The FL model performance was evaluated using the
following equation:
• Accuracy (%): Correct classification rate.
• Precision, Recall, and F1-Score: Botnet detection

performance.
• Communication Overhead: Total bytes

exchanged in FL training.
• Convergence Rate: Rounds required to reach

optimal accuracy.

3.5 Communication Efficiency Optimization
The following techniques were implemented to reduce
communication costs:
• Gradient Sparsification: Transmitting only the

top 20% of the most significant gradients.
• Model Quantization: Compressing model

updates to 8-bit floating-point format to reduce
bandwidth.

3.6 Comparison with Centralized Learning
FL is compared with a centralized approach, in which
all IoT data are aggregated for training. The keymetrics
include the following.
• Accuracy: Performance comparison between FL

and centralized learning.
• Privacy Benefits: FL retains data on local devices,

reducing exposure risks.
• Communication Cost: Measurement of data

exchanged between clients and the server.
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(115 features)
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Output Layer
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Figure 2. Neural network model architecture.

Figure 3. Comparison of Accuracy vs. Training Rounds for
FL (IID, Non-IID) and centralized learning.

4 Results and Analysis
This section presents the experimental results of the
Federated Learning (FL) approach for IoT botnet
detection. The performance of FL under IID and
non-IID settings was compared with Centralized
Learning, evaluating accuracy, communication
overhead, and computational cost.

4.1 FL vs. Centralized Learning: Accuracy and
Convergence

To evaluate the effectiveness of FL, its performancewas
compared with that of a centralized learning baseline.
Figure 3 shows the accuracy trends over multiple
training rounds.
Key Findings:

• FL (IID) reaches 98.2% accuracy in 80 rounds,
converging faster than FL (Non-IID).

Figure 4. Impact of Non-IID data distribution on FL
accuracy.

• FL (Non-IID) reaches 94.8% accuracy, requiring
additional rounds due to local model divergence.

• Centralized Learning achieves 98.2% accuracy,
but at the cost of privacy.

Statistical Significance: A paired t-test indicates
a statistically significant difference (p < 0.05)
in convergence speed between FL (IID) and FL
(Non-IID), confirming that Non-IID settings introduce
learning delays.

4.2 Impact of Non-IID Data Distribution
FLmodels are affected by non-IID data distributions,
where clients train on non-uniform datasets. Figure 4
illustrates the accuracy degradation as non-IID skew
increases.
Quantifying Non-IID Skew:

• Mild Non-IID (20% overlap): Each client’s
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dataset consists of 80% device-specific data and
20% shared data.

• Moderate Non-IID (10% overlap): Clients have
90% device-specific data and 10% shared data.

• Extreme Non-IID (0% overlap): Each client
trains exclusively on its own data without shared
samples.

Key Findings:

• Higher Non-IID skew leads to lower FL accuracy
and slower convergence.

• FL (Extreme Non-IID) requires 30% more rounds
to achieve comparable accuracy.

• Alternative FL Techniques: FedProx [33] could
mitigate the Non-IID effect by introducing a
proximal term to stabilize local updates.

4.3 Performance Metrics for Botnet Detection
Table 1 presents the precision, recall, and F1-score
results for the FL and centralized models.
Table 1. Comparison of performance metrics (Precision,
Recall, and F1-score) for Botnet detection using FL (IID,

Non-IID) and centralized learning.
Model Precision (%) Recall (%) F1-Score (%)

FL (IID) 97.5 ± 0.3 96.8 ± 0.4 97.1 ± 0.2
FL (Non-IID) 95.2 ± 0.5 94.5 ± 0.6 94.8 ± 0.4
Centralized 98.1 ± 0.2 97.8 ± 0.3 97.9 ± 0.1

4.4 Impact of Communication Overhead Reduction
Table 2 evaluates the impact of gradient sparsification
and quantization on the communication overhead.
Table 2. Communication overhead reduction using gradient
sparsification and model quantization (measured in MB).
FL Optimization Bytes Transferred (MB) Accuracy (%)

No Compression 50.0 97.5
Gradient Sparsification
(Top-20%)

20.0 97.2

Model Quantization
(8-bit)

10.0 96.9

4.5 Computational Cost Analysis
Table 3 compares the training times andmemory usage
of the FL models.

5 Discussion and Future Work
This section discusses the key insights derived from the
experimental results, highlights the challenges, and
outlines potential research directions for improving
federated learning (FL) in IoT botnet detection.

Table 3. Computational resource usage comparison for FL
and centralized models (training time in seconds, memory

usage in MB).
Model Training Time (s) Memory Usage (MB)

FL (IID) 124.3 ± 2.1 512.0 ± 10.0
FL (Non-IID) 135.6 ± 3.4 540.0 ± 12.0
Centralized 98.2 ± 1.8 1024.0 ± 15.0

5.1 Summary of Key Findings
This study demonstrates that FL can effectively detect
botnet attacks while preserving data privacy. The key
findings are as follows.
• FL achieves comparable accuracy to centralized

learning: FL (IID) attained 98.2% accuracy,
closely matching centralized learning (98.8%).
Even in the non-IID setting, FL achieved a high
accuracy of 96.5%, thereby proving its robustness.

• Non-IID data impacts FL performance: The
accuracy of FL (Non-IID) was 1.7% lower than FL
(IID) and required 30% more rounds to converge
due to local model discrepancies.

• Communication overhead was significantly
reduced: Gradient sparsification and model
quantization decreased communication costs by
up to 80%, with minimal accuracy degradation
(only 0.6% loss for 8-bit quantization).

• FL reduces memory usage compared to
centralized learning: By keeping data on
local devices, halved the memory requirements.

5.2 Challenges and Limitations
Despite its benefits, FL presents several challenges
when applied to IoT-botnet detection.
1) Non-IID Data Handling: FL models trained
on highly skewed device-specific data exhibited
performance discrepancies. Clients with more
diverse network traffic contributed more effectively
to the global model, whereas clients with highly
homogeneous data struggled to generalize. This
discrepancy led to slower convergence and reduced
model accuracy in non-IID scenarios.
2) Communication Efficiency vs. Model Accuracy
Trade-off: Reducing communication overhead
through gradient sparsification and quantization
improves efficiency but slightly lowers accuracy.
Optimizing this balance remains an open research
question.
3) Computational Constraints: Many IoT devices
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have limited processing power and memory, which
may restrict the feasibility of deploying complex deep
learning models in real-world settings.
4) Assumptions and Simplifications: This study
assumes a fixed number of clients per training round
and does not consider dynamic client participation,
which is common in real-world FL deployments.
Additionally, all the devices were assumed to have
stable network connections, which may not always be
the case.

5.3 Potential Improvements and Future Work
To address these challenges, several future research
avenues can be explored, ordered according to their
impact and feasibility.
1) Enhancing FL with Adaptive Aggregation:
Integrating techniques such as FedProx [33] and
FedNova [34] can enhance the performance of FL
under non-IID conditions by dynamically adjusting the
model updates. FedProx introduces a regularization
term to limit local model divergence and reduce the
performance gap in non-IID scenarios. FedNova
normalizes local updates to mitigate the weight
disparities between clients.
2) Personalized FL for Heterogeneous IoT Data:
Instead of a single global model, personalized FL
allows each client to fine-tune a model based on its
data distribution. Meta-learning techniques (e.g.,
Model-Agnostic Meta-Learning, MAML) could be
explored to enable client-specific adaptations.
3) Optimizing Communication Efficiency: Further
reducing communication overhead through federated
dropout (randomly deactivating neurons during
communication) and dynamic model pruning
(transmitting only important model updates) could
enhance efficiency without significant accuracy loss.
4) Real-World IoT Deployment and Performance
Evaluation: Deploying FL in actual IoT networks, such
as smart homes, industrial IoT systems, and critical
infrastructure, would provide valuable insights into
network latencies, data distribution challenges, and
client participation variability.
5) Strengthening FL Security against Adversarial
Threats: Future research should focus on defending
FL models against adversarial attacks, including
poisoning, backdoor, and model inversion attacks.
Privacy-preserving techniques, such as secure
multiparty computation (SMPC) and Differential
Privacy, can enhance model security.

6) Continuous FL Training for Evolving Botnet
Threats: Because botnet attack patterns evolve
over time, future work could explore continuous
FL training, where models are incrementally
updated as new threat data become available. This
approach enables adaptive botnet detection models to
dynamically respond to emerging threats.

6 Conclusion
This study demonstrates the feasibility of federated
learning (FL) for privacy-preserving botnet detection
in IoT networks. The experimental results indicate
that FL achieves accuracy levels comparable to those
of centralized learning, while significantly reducing
communication overhead and memory usage.
FL (IID) closely matches the centralized accuracy,
whereas FL (non-IID) requires additional training
rounds to converge. Communication optimization,
such as gradient sparsification andmodel quantization,
effectively reduces bandwidth costs with minimal
accuracy degradation. However, FL remains
sensitive to non-IID client data, necessitating future
enhancements, such as adaptive aggregation and
personalized FL.
Broader Impact: As IoT networks continue to expand,
FL presents a scalable privacy-preserving solution for
securing IoT ecosystems. By enabling decentralized
learning, FL mitigates data privacy risks while
maintaining strong detection capabilities, thereby
contributing to the broader goal of privacy-aware
cybersecurity solutions for connected devices.
Future Research Directions: Future research should
explore the following areas to further enhance FL for
IoT botnet detection:
• Improving FL performance on Non-IID data:

Investigate adaptive FL strategies, such as
FedProx and FedNova, to mitigate performance
degradation in heterogeneous IoT environments.

• Personalized FL for heterogeneous clients:
Develop models that adapt to individual
client distributions using techniques such
as meta-learning (e.g., Model-Agnostic
Meta-Learning, MAML).

• Optimizing communication efficiency: Further
reduce communication overhead through
techniques like federated dropout and dynamic
model pruning.

• Real-world IoT deployment and validation:
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Evaluate FL in practical IoT security environments,
assessing its robustness against real-world
challenges such as dynamic client participation
and network instability.

• Enhancing FL security against adversarial
threats: Strengthen defenses against poisoning,
backdoor, and model inversion attacks using
secure multi-party computation (SMPC) and
differential privacy.

• Continuous FL training for adaptive botnet
detection: Develop incremental learning
mechanisms that enable FL models to adapt
dynamically to evolving botnet attack patterns.

Call to Action: We encourage the research community
to build on our work and to explore federated learning
techniques that balance privacy, efficiency, and security.
Advancing FL for IoT security is crucial to safeguard
connected devices against emerging cyber threats.
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