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Abstract
Accurately determining the state of charge (SOC)
is a critical factor in effective energy management
for electric vehicles (EVs). Therefore, SOC
variations in battery packs must be assessed
with high precision. To simulate the complex
processes within EVs that involve lithium-ion
batteries (LIBs), an appropriate battery model is
essential. Accurate parameter extraction through
algorithmic methods is key to reliable SOC
estimation. A dynamic, high-order equivalent
circuit model, featuring two RC pairs in series with
the battery’s internal resistance, is employed to
enhance parameter extraction. The values of the
RC pairs are derived by solving equations that
characterize the operational states of the high-order
circuit. Parameter identification is facilitated
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by the hybrid pulse power characterization test,
which enables precise SOC estimation. The
estimation process is further refined by integrating
an extended Kalman filter (EKF) technique, along
with open-circuit voltage computations. Simulation
results demonstrate that this optimization strategy
significantly improves SOC estimation accuracy,
reducing the initial error to below 2.64% using the
EKF approach, compared to a maximum battery
model error of 3.88%. As a result, high performance
is obtained from LIB packs.

Keywords: extended kalman filter, high-order equivalent
model, Lithium-ion batteries, state of charge, parameter
identification.

1 Introduction
The persistent dependence on fossil fuels and the
increasing effects of environmental challenges have
led to a global energy crisis and pressing pollution
issues [1]. In response, governments globally are
significantly investing in advancing renewable energy
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to update conventional energy infrastructures. The
automotive industry, a principal source of pollution,
is seeing a substantial transition, with electric
vehicles (EVs) gaining preference over traditional
fuel-powered vehicles [2]. Lithium-ion batteries (LIBs)
recognized for their compact size, low maintenance
cost, extended life cycles, and elevated energy density,
have emerged as the preferred energy source for
EVs and energy storage applications [3–5]. Precise
assessment of the state of charge (SOC) is essential
for optimal battery management, facilitating efficient
energy use and averting harm from overcharging or
over-discharging [6, 7]. As SOC cannot be directly
quantified in LIBs, it must be deduced from external
characteristics, rendering accurate SOC estimation a
pivotal research priority.

Multiple techniques for SOC estimate have been
established and classified into four primary categories:
coulomb counting (CC) [8], open circuit voltage
(OCV) [9], data-driven methodologies [10, 11], and
model-based approaches [12]. The CC method
determines SOC by integrating current over
time, providing efficiency and expedience [13].
Nevertheless, it is acutely sensitive to the beginning
SOC values and the precision of current sensors,
potentially resulting in cumulative inaccuracies [14].
Conversely, the OCV technique employs
comprehensive experimental data to formulate
a correlation between OCV and SOC, yielding
more reliable estimates. However, its precision is
constrained by hysteresis effects, and it necessitates
extended rest periods for open-circuit voltage
stabilization, making it inappropriate for real-time
applications [15, 16].

Data-driven methodologies assess SOC utilizing
comprehensivemetrics including temperature, voltage,
and current, circumventing the intricacies of battery
chemistry and architecture. These methodologies
employ sophisticated models such as fuzzy logic [17,
18], support vector machines [19], and neural
networks [20–23], to get elevated accuracy and
efficiency. Nonetheless, they frequently necessitate
high-quality data, intricate designs, and considerable
calculation resources [24–26].

Model-based approaches, including sophisticated
filtering algorithms, provide substantial benefits
for SOC estimates. In contrast to conventional
methods such as OCV and CC, model-based
approaches provide real-time SOC estimation with
less measurement data and reduced processing

expenses [1]. As a result, they are extensively utilized
in LIB applications, particularly via electrochemical
models (EMs) [2] and equivalent circuit models
(ECMs) [27]. ECMs are favored due to their simple
architecture, minimal processing requirements, and
real-time application, emulating battery behavior
with fundamental electrical components like resistors
and capacitors to provide precise SOC estimates.
This paper emphasizes ECMs for their equilibrium
between precision and simplicity of implementation.
These models necessitate parameter identification
customized for particular battery circumstances,
accomplished by either offline or online tuning [28].
Offline approaches are typically preferred due to
their simplicity and reduced computing expense,
albeit they include a little trade-off in real-time
precision. Contemporary SOC estimate strategies
often depend on filtering mechanisms and state
observers. Designing effective state observers is tough
due to intricate convergence criteria that can impact
estimation accuracy.

Among filtering methodologies, the Kalman filter
(KF) family is particularly productive, diminishing
sensor noise and providing high SOC precision
with little computational complexity [29, 30]. The
practicality of KF approaches renders them more
advantageous than state observers in numerous
applications. KF techniques enhance system
parameters by leveraging data characteristics and the
least squares principle [31], minimizing dependence
on initial integration values [32] and obviating
the necessity for large datasets, thus facilitating
real-time SOC estimates [33]. Notwithstanding these
benefits, conventional KF approaches face challenges
with nonlinear and intricate dynamics [34]. The
extended Kalman filter (EKF) is implemented to
resolve this issue. The EKF technique improves
linearization accuracy by using a high-order Taylor
series expansion to approximate nonlinear OCV and
SOC functions more precisely. Simplified Jacobian
matrix approximations and sparse matrix approaches
focus on crucial data points, reducing computing
complexity while maintaining precision. Real-time
modifications to model parameters, together with
dynamic noise compensation, help sustain robust
performance in quickly changing situations, further
decreasing linearization faults. These strategies
improve the EKF’s capacity to address nonlinear
dynamics. The main contributions of this paper can
be effectively summarized as follows:

• Proposed an innovative SOC estimation method

2



IECE Transactions on Power Electronics and Industrial Systems

Figure 1. Proposed dynamic high-order ECM battery model.

for LIBs that integrates a dynamic high-order
ECM with the EKF algorithm to enhance
performance.

• Addressed model discrepancies and
measurement uncertainties by accurately
estimating noise variance and system states,
achieving robust SOC predictions.

• Validated the superior accuracy, convergence rate,
and resilience of the EKF algorithm through
comprehensive testing under varied conditions,
maintaining a minimal SOC estimation error
within a range of 2.64% to -2.23%, even in
challenging scenarios.

The structure of this paper is as follows: Section 2
provides a comprehensive mathematical analysis
of SOC estimation, the dynamic high-order
battery model, the impact of cell balancing on
LIB performance, and the EKF algorithm. Section 3
details the experimental and results analysis, covering
platform configuration, HPPC test performance,
parameter identification, OCV testing, dynamic
high-order model verification, and SOC estimation
results. Finally, Section 4 presents the conclusion.

2 Mathematical Analysis
2.1 Definition of SOC
The SOC is a measure that indicates the remaining
capacity of a battery expressed as a percentage of
its total capacity. It is defined as the ratio of the
battery current charge to its total capacity, reflecting the
proportion of stored energy relative to its maximum
potential [35]. A SOC of 100% denotes a fully
charged battery, whereas a SOC of 0% represents
a completely discharged condition. This statistic is
essential for applications necessitating accurate energy

management, such as EVs and portable gadgets, as
it facilitates the monitoring and optimization of the
battery’s residual energy. The fundamental equation
for SOC at any given time t is expressed as:

SOC(t) =
1

Cnom

∫ t

t0
I(τ)dτ + SOC(t0) (1)

In this context, SOC(t) denotes the SOC at a given
time t, while SOC(t0) represents the initial state at
starting time t0. Cnom is the nominal capacity of the
battery, measured in AH. The current at any time
τ is represented by I(τ), with discharge currents
being negative and charge currents positive. The term∫ t
t0 I(τ)dτ reflects the integral of current over time,
indicating the net charge added to or removed from
the battery since time t0. It is noted that this equation
assumes ideal conditions, meaning real-world factors
such as battery degradation, temperature, and
self-discharge could impact the accuracy of SOC
estimation.

2.2 Dynamic High-order Battery Model
An effective model-based estimation approach relies
heavily on selecting an appropriate battery model,
with various electrical models available to accurately
simulate battery characteristics, such as the Thermal
model, the ECM, and the electrochemical model.
ECMs, widely used for replicating batteries dynamic
behavior and voltage response under different current
states, include types like the PNGV (Partnership for a
New Generation of Vehicles) model, Rint model [36],
GNL model, Thevenin model, and improved Thevenin
model [37]. These models are built from basic circuit
elements voltage sources, resistors, and capacitors and
often employ an enhanced RC network for improved
accuracy and structural integrity. This study employs
an analogous circuit model with an extended two-RC
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network, incorporating a resistor R0, two RC networks,
and a voltage source Uoc, as illustrated in Figure 1.
The circuit model configuration is suitable for
representing a two-state system. In this model,
R0 represents the ohmic internal resistance of
the LIB. The elements Rp1 and Cp1 correspond
to the electrochemical polarization resistance and
capacitance, respectively, while Rp2 and Cp2 represent
the resistance and capacitance associated with
concentration polarization. The output voltage source
Uoc maintains a consistent relationship with the
SOC, and IL denotes the charge current, with UL

representing the terminal voltage. Based on the
behavior of dynamic high-order RC batteries, the
voltage can be calculated as shown in Eq. (2).

UL = Em(OCV )− Up − Up1 − Up2 (2)

This study develops a model for LIBs in EVs, focusing
on three key aspects: the electrical model, the thermal
model, and the degradation model. In this framework,
Up1, Up2, and the SOC are used as state variables, with
UL as the observation vector. The equivalent circuit
model is represented by Eq.(3):

Up1 =
IL
Cp1

− Up1

Cp1Rp1

Up2 =
IL
Cp2

− Up2

Cp2Rp2

(3)

The SOC vector represents the open-circuit voltage,
establishing a non-linear relationshipwithin themodel.
By applying concepts from current control theory,
the circuit model can be discretized. For dynamic
high-order ECMs, the selected state variables are [SOC,
Up1, Up2]. The model’s state-space representation,
along with the SOC description, is further detailed
in Eq. (4).
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Uk+1 = Uoc(SOCk+1)− Up1,k+1 − Up2,k+1 − iRo

(4)
In Eq. (4), the model can be adapted for the
recursive least-squaresmethod, which enables efficient
estimation of key parameters. This method yields
the circuit modeling parameters R0, Rp1, Rp2, Cp1,
and Cp2 derived from the identification results,
thereby delivering a comprehensive depiction of the
battery dynamic behavior. Utilizing recursive least

squares, the model can perpetually enhance parameter
values in real-time, hence augmenting its precision in
representing the battery status across varying settings.
This versatility is essential for applications requiring
continuous status monitoring and accurate model
modifications, such as EVs and various energy storage
systems.

2.3 Impact of Cell Balancing on LIB Performance
Cell balance is critical for the performance, safety,
and lifespan of LIB packs. These packs are made
up of numerous cells connected in series or parallel,
each with a somewhat different capacity, internal
resistance, and SOC [38]. Over time, these variations
might cause imbalances that harm the battery
system. Cell balancing corrects these inequalities,
maintaining consistent cell behavior and improving
overall performance. The following is an analysis of
the main impacts of cell balancing:

I Enhanced SOC accuracy:
Cell balancing ensures that the SOC is uniform
across all cells, which improves the BMS
accuracy in predicting the overall SOC [39].
Imbalances can cause cells to become under
or overcharged, resulting in mistakes in SOC
estimates. These inconsistencies impair energy
efficiency, degrade performance, and jeopardize
battery reliability. Balancing optimizes energy
utilization and improves system reliability by
equalizing SOC among cells.

II Prolonged battery lifespan:
Cell balancing increases battery life by correcting
imbalances that cause rapid degradation.
Without balancing, overcharging or deep
draining individual cells causes premature
breakdown and reduces battery life. Balancing
prevents these extreme situations by maintaining
regular charge levels, minimizing stress on
individual cells, and guaranteeing consistent
aging, all of which improve durability and
long-term performance.

III Improved safety and thermal stability:
Cell balance is critical for assuring safety and
thermal stability in LIB packs. Imbalances
can cause overcharging or excessive discharging,
which generates heat and increases the risk of
thermal runaway, fires, and explosions [40].
Proper balance keeps cells within safe working
limits, which prevents overheating and reduces
these dangers. This increases safety while
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charging and discharging and provides consistent,
stable performance under changing situations.

2.4 The Mechanism of the EKF Algorithm
The KF is a robust technique designed to estimate
a system’s present state with a linear state-space
model, incorporating system inputs and outputs.
Although the classic KF is best for linear systems,
numerous actual applications, such as assessing the
SOC in LIBs, are fundamentally non-linear. The EKF
modifies the KF for non-linear systems [41]. The
EKF approximates non-linear state-space equations
by employing a first-order Taylor series expansion,
enabling successful estimation of the current state
without necessitating full linearity [42, 43].
In this process, the EKF retains only the first-order
terms from the Taylor expansion, discarding
higher-order terms to approximate local linear
behavior [44]. This adaptation enables the EKF to
apply theKF to the locally linearizedmodel, producing
a near-optimal state estimate. It is particularly effective
for discrete-time non-linear systems that require
precise real-time state estimation. The EKF operates
in two primary phases: the Prediction Phase and the
Update (Correction) Phase.

2.4.1 Prediction Phase
In this phase, the EKF uses the current state estimate
to predict the next state and its associated error
covariance.
I. State Prediction:

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (5)

where, x̂k|k−1 represents the predicted state at time
k, based on the previous state estimate x̂k−1|k−1 and
the control input Uk−1. The function f models the
non-linear dynamics of the system, allowing for the
projection of the state forward in time based on past
state estimates, independent of new measurements.
II. Jacobian of the State Transition Model:

Fk−1 =
∂f

∂x

∣∣∣∣∣x̂k−1|k−1, uk−1 (6)

Given the non-linearity of f , it is linearized around
the previous state estimate x̂k−1|k−1 using its Jacobian,
Fk−1. This matrix of partial derivatives of f with
respect to x enables the use of the KF framework,
initially designed for linear systems.

III. Covariance Prediction:

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (7)

The predicted error covariance Pk|k−1 quantifies the
uncertainty in the state prediction by combining the
previous error covariance Pk−1|k−1, the Jacobian Fk−1,
and the process noise covariance Qk−1. This step
updates the uncertainty associated with the state
estimate as it propagates through the non-linear
dynamics.

2.4.2 Update (Correction) Phase
The update phase refines the state prediction by
incorporating a new measurement, thus enhancing
accuracy.
I. Measurement Prediction:

ẑk|k−1 = h(x̂k|k−1) (8)

where, ẑk|k−1 represents the predicted measurement,
obtained by applying the non-linear observation
function h to the predicted state x̂k|k−1. This step
enables comparison with the actual measurement zk.
II. Jacobian of the Observation Model:

Hk =
∂h

∂x

∣∣∣∣∣x̂k|k−1 (9)

Like f , the observation function h is non-linear, so
it is linearized around the predicted state x̂k|k−1. The
JacobianHk is thematrix of partial derivatives ofhwith
respect to x, evaluated at x̂k|k−1, which transforms the
state covariance into measurement space for Kalman
gain calculation.
III. Innovation (Residual):

yk = zk − ẑk|k−1 (10)

The innovation yk represents the difference between
the actual measurement zk and the predicted
measurement ẑk|k−1, indicating the error in the
prediction. This residual guides the correction applied
to the state estimate.
IV. Innovation Covariance:

Sk = HkPk|k−1H
T
k +Rk (11)

The innovation covariance Sk reflects the uncertainty
in the innovation yk, combining the projected error
covariance in the measurement space HkPk|k−1H

T
k

with the measurement noise covariance Rk. A higher
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Sk implies greater uncertainty, influencing the Kalman
gain.
V. Kalman Gain:

Kk = Pk|k−1H
T
k S

−1
k (12)

The Kalman gain Kk determines the weight
given to the measurement in updating the state
estimate, balancing the predicted state and the new
measurement based on their uncertainties. A higher
Kalman gain favors the measurement, while a lower
gain favors the prediction.
VI. State Update:

x̂k|k = x̂k|k−1 +Kkyk (13)

The updated state x̂k|k is obtained by adjusting the
predicted state x̂k|k−1 with the innovation yk scaled by
the Kalman gainKk, incorporating new information
to refine the state estimate.
VII. Covariance Update:

Pk|k = (I −KkHk)Pk|k−1 (14)

Finally, the error covariance Pk|k is updated to reflect
reduced uncertainty after incorporating the new
measurement, resulting in a more precise estimate.

3 Experiments and Results Analysis
3.1 Experiment Platform Setup
The battery test platform used in this experiment
is equipped with Shenzhen Xinwei New Energy
Technology Corporation’s CT-4616-5V100A-NTFA
equipment. This platform, shown in Figure 2, enables
precise charging and discharging of a ternary LIB
module, with a maximum input voltage of 380V at
50/60Hz and a peak current of 100 A. The system
is intended for high-performance battery testing,
enabling extensive investigation of battery behavior
under a variety of settings. Key parameters like
voltage, current, and temperature are detected and
recorded in real-time on a host computer running
the BTS-7.6 software. This program, with its
extensive data-gathering capabilities, sends important
performance data to the main control system over
TCP/IP, allowing for continuous monitoring and
control during the testing process.
To maintain consistent environmental conditions,
the battery testing is conducted within a
temperature-controlled chamber (model
DGBELL-BTT-331C), which can regulate both

Figure 2. Experimental platform setup procedure.

Table 1. Key function of battery parameters.
Criteria Parameters

Working temperature/°C 25
The discharge cutoff voltage/V 2.60
Size: length*width*height/mm 200*80*180
The charge cut off voltage/V 4.20

Rated Voltage 3.80
Maximum Load current/A 70

high and low temperatures, ensuring a steady 25°C
throughout the tests. The testing setup includes
components such as a CAN unit, battery management
system (BMS), and LIB modules, all interconnected
through power and data lines for seamless monitoring.
The specifications of the battery, including dimensions,
rated voltage, and operating temperature, are detailed
in Table 1. The experiment is designed to assess
the battery actual discharge capacity under varying
conditions, considering potential capacity degradation
due to factors like recycling. This calibration and
evaluation are crucial for accurate SOC assessments
during battery operations.

3.2 HPPC Test Performance
The hybrid pulse power characterization (HPPC) test
is a fundamental technique for evaluating battery
performance, serving as the foundation for examining
power behavior and determining critical parameters
in battery models. This assessment delineates offline
factors and is extensively utilized. The HPPC test
comprises a series of profiles that alternate between
constant current discharge pulses and rest intervals,
facilitating a comprehensive assessment of a battery’s
dynamic reactions. Created by the Idaho National
Engineering and Environmental Laboratory (INEEL)
as part of the Freedom CAR energy storage effort,
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Figure 3. Complete and single current-voltage results: (a) Complete HPPC current curve, (b) Complete HPPC voltage
curve, (c) Single HPPC current curve, (d) Single HPPC voltage curve.

this test delineates battery power characteristics across
diverse situations. In addition to performance analysis,
the HPPC test facilitates the configuration of circuit
module characteristics to align with battery standards.
Figure 3(a) and 3(b) illustrate the current and voltage
profiles of a whole HPPC test cycle, whereas Figure
3(c) and 3(d) present individual current and voltage
curves. Using batteries of identical capacity and origin
ensures consistency, reducing variations and focusing
on experimental conditions.
The discharge process follows a specific sequence:
1. At time t1, the discharge begins, causing a sharp

drop in terminal voltage from U1 to U2 due to the
LIB internal resistance.

2. From t2 to t3, the voltage gradually decreases from
U2 to U3, influenced by battery polarization and
the RC circuit’s zero-state response.

3. Between t3 and t4, a sudden voltage increase from
U3 toU4 occurs, attributed to shifts in the battery’s
internal resistance.

4. Finally, between t4 and t5, the terminal voltage
rises steadily from U4 to U5 as the polarization
capacitance discharges, demonstrating the RC
circuit’s zero response.

Figure 3(d) illustrates the variable and stable behaviors
of the LIB, with each voltage measurement adhering

to particular requirements, hence proving meticulous
monitoring of voltage and current under regulated
conditions.

3.3 Parameter Identification
Parameter identification in LIBs is essential for
comprehending the internal properties and behaviors
that affect a battery performance, efficiency, and
safety. This entails estimating critical parameters
such as internal resistance, SOC, state of health,
capacity degradation, and thermal dynamics. These
factors are crucial for precise modeling and simulation,
facilitating the creation of resilient BMS that oversee
and enhance battery performance in real time.
This investigation determined that online parameter
detection would elevate computational complexity
without enhancing accuracy; thus, offline identification
was selected. At 25°C, the battery was subjected to
an HPPC test, facilitating the extraction of model
parameters through the analysis of the battery’s
operating characteristics. Table 2 shows the findings of
the identified parameters, based on HPPC data at each
point, and provides values for the dynamic high-order
ECM parameters at various SOC levels.

With this method, researchers can forecast battery life,
assess deterioration, and improve LIBs flexibility for
uses such as renewable energy storage and electric
cars. The HPPC test at 25°C revealed important
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Table 2. Parameter identification at different SOC levels.
SOC (%) OCV/V R0/W RP1/W RP2/W CP1/F CP2/F

10 3.4545 0.00151 0.0007 0.0001 17539.6664 4414.2351
20 3.5368 0.00141 0.0005 0.0000 27581.6998 12980.6094
30 3.5900 0.00142 0.0004 0.0000 31625.7092 18372.8397
40 3.6166 0.00131 0.0004 0.0000 37939.8988 32882.0200
50 3.6512 0.00132 0.0006 0.0000 31707.6273 19733.8402
60 3.7363 0.00131 0.0003 0.0000 24409.4122 18973.3658
70 3.8309 0.00134 0.0006 0.0000 23566.6671 20541.1868
80 3.9362 0.00133 0.0004 0.0001 25101.4887 93120.7288
90 4.0515 0.00131 0.0005 0.0000 26116.6477 19737.7047
100 4.1845 0.00132 0.0004 0.0000 26421.0526 116563.8765

characteristics necessary for a precise evaluation
of battery performance. The findings, which are
displayed in Table 2, support accurate modeling and
the creation of sophisticated BMS to track and improve
battery performance in real time by providing dynamic
high-order ECM parameter values across SOC levels.

3.4 Open Circuit Voltage Test
The OCV test is a crucial diagnostic technique for
evaluating the health and SOC of LIBs. In this test,
the battery is permitted to rest in an open-circuit
condition, detached from any external load, to allow
the voltage to settle. The measured OCV, obtained in
the absence of current flow, indicates the battery SOC
as it signifies the equilibrium potential resulting from
internal electrochemical reactions. This investigation
involved the collection of OCV-SOC data points to
construct a curve illustrating the correlation between
OCV and SOC, as depicted in Figure 4. The plot
demonstrates an ascending trend in OCV as SOC
increases, exhibiting a steeper slope at elevated SOC
values, signifying a non-linear connection. This curve
was produced via a curve-fitting method, yielding
a precise representation of OCV behavior across
various SOC levels. The non-invasive characteristics of
OCV testing provide significant insights into battery
status without depleting or modifying the battery’s
state. This renders it an essential instrument for
BMS to assess SOC, detect aging effects, and identify
potential problems. An established OCV-SOC model
facilitates ongoing assessment of battery performance
and assists in predicting battery lifespan, hence aiding
applications like EVs and renewable energy storage
systems.
The non-invasive characteristics of OCV testing
provide significant insights into battery status without
depleting ormodifying the battery’s state. This renders
it an essential instrument for BMS to assess SOC,

Figure 4. The SOC-OCV relationship curve.

detect aging effects, and identify potential problems.
An established OCV-SOC model facilitates ongoing
assessment of battery performance and assists in
predicting battery lifespan, benefiting applications
such as EVs and renewable energy storage systems.

3.5 The Dynamic High-order Model Verification
Approach

The dynamic high-order model validation technique
utilizes an ordinary differential equation framework
to mimic the ECM in the temporal domain. Utilizing
Simulink, the model voltage response is discretized,
facilitating a discrete state-space formulation
crucial for dynamic high-order models. The model
emphasizes several electrical factors, including current
I , internal resistance R0, polarization resistances Rp1

and Rp2, and polarization capacitors Cp1 and Cp2.
These characteristics are augmented by open-circuit
voltage Uoc, terminal voltage UL, and load current IL.
The model includes internal parameters that change
dynamically to the SOC, seen as an independent
variable. As the SOC evolves, the model utilizes
historical states to preserve a connection with the
present charge state, considering recent variations.
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Figure 5. The verification structure of the dynamic high-order ECM in Simulink.

Figure 6. Internal Structure of the Dynamic High-Order ECM.

Figure 5 presents a Simulink simulation comparing
actual and simulated voltage responses to evaluate the
accuracy, with error indicators and metrics validating
the model performance and reliability in capturing
real-time voltage dynamics.

The configuration comprises adjustable voltage and
current sources that engage via signal interfaces,
transforming electrical inputs into signals that actuate
the model. External voltage and current sensors
operate as transducers, enabling seamless integration

inside the circuit model. This design facilitates
accurate monitoring and control, guaranteeing that
the dynamic high-order model precisely represents
real-time operational characteristics.

Figure 6 depicts the operational mechanisms of
the dynamic high-order ECM, wherein each circuit
component evolves over time to accommodate
changing situations. This model consists of seven
primary inputs: IL, R0, Rp1, Rp2, Cp1, Cp2, and
Uoc, which collectively regulate UL under varying
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Figure 7. High-order simulation model verification and experimental error curve: (a) high-order voltage variation curve,
(b) high-order simulation error indication curve.

Figure 8. SOC estimation verification results using the EKF algorithm: (a) EKF-SOC estimation simulation result, (b)
SOC estimation error curve.

conditions. To validate the dynamic high-order ECM,
real voltage and current data from cyclic discharge
tests are imported into a MATLAB/Simulink-based
simulation. This model replicates battery behavior
across different SOC states. SOC values are
dynamically measured and linked to a function
correlating SOC and Uoc, enabling tracking of the
battery voltage over time. In this approach, Uoc is
integrated into the model to calculate the battery
terminal voltage, which is then compared to actual
terminal voltage measurements.
Figure 7 presents the verification of the high-order
simulation model along with the corresponding
experimental error curve. The solid blue line (X2)
represents the estimated output voltage derived
from the model, while the solid red line (X1)
indicates the real battery terminal voltage. The close
alignment between the model output voltage and the
real measurements demonstrates the reliability and
effectiveness of the parameter identification method,
as illustrated in Figure 7 (a).
Figure 7(b) also illustrates the simulation error. The
difference between the estimated output voltage and
the actual battery terminal voltage, referred to as

the model error, highlights the impact of simulation
accuracy on the results. The mean-variance is roughly
3.88%, potentially indicating the battery performance
during pivotal moments during discharge. Error
study reveals that discrepancies in voltage estimations
typically escalate towards the conclusion of the battery
discharge cycle. This indicates a substantial alteration
in battery voltage as it nears the concluding stage
of discharge, highlighting the want for accurate
modeling. Notwithstanding these slight inaccuracies,
the simulation model attains an exceptional accuracy
rate of 99.15%, with the maximum recorded voltage of
the LIB reaching 4.2V.

3.6 Verification of SOC Estimation Results for the
EKF Algorithm

To assess the efficacy of the EKF algorithm, a
dynamic high-order ECM was carefully calibrated
by adjusting parameters derived from HPPC testing.
This calibration is essential for synchronizing the
model’s behavior with the true dynamics of the
battery. After calibration, the model’s output
undergoes a rigorous comparison with actual battery
data to verify its accuracy. The model simulates
continuous battery discharge over a specified

10
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duration, accurately capturing a range of real-world
operating conditions, and making it suitable for
practical applications. During this validation process,
up-to-date experimental data is used as input for
the model, and the simulated terminal voltage is
compared to the measured values, as shown in
Figure 8.
Figure 8(a) shows the SOC estimation results for
three methods: SOC1 as the genuine SOC, SOC2
calculated using a standard ECM with an EKF, and
SOC3 estimated using a dynamic high-order ECM
with an EKF. Figure 8(b) illustrates the error curve,
with the red line showing the deviation between
the EKF’s SOC estimate and the actual SOC from
test data. The results show that the EKF algorithm
greatly decreases the initial SOC estimation error,
attaining high robustness with an error margin of
less than 2.64% under steady conditions. This
precision demonstrates the EKF dependability in
providing correct SOC estimates under different
situations, highlighting its applicability for real-time
BMS. Furthermore, the suggested filter accurately
reflects the system’s real-world dynamics. Overall, the
experiment confirms that the EKF algorithm provides
consistent, precise SOC estimates for LIBs.

4 Conclusion
This research employs a dynamic high-order ECM
to accurately identify parameters for LIBs. Through
rigorous circuit analysis, exact expressions for the
2RC time constant and terminal voltage are derived.
Using EKF algorithms based on HPPC tests, precise
parameter identification is achieved, followed by
the construction of a MATLAB Simulink model to
validate the findings against HPPC experimental
data. The developed parameter identification method
demonstrates over 98.16% accuracy for the ECM. This
work presents a reliable approach for LIB parameter
identification, establishing a critical foundation for
SOC estimation in BMS. Additionally, by applying
linearization techniques, the study constructs a
dynamic high-order ECM and implements an EKF
for SOC estimation. The efficacy of the algorithm is
experimentally validated through battery discharge
tests on both fully and partially charged batteries, with
an error margin of less than 2.64%. The proposed
algorithm’s effectiveness is further confirmed through
experiments on both fully and partially discharged
batteries, establishing its practical reliability. However,
despite its potential to significantly advance battery
development, the proposed method has a notable

limitation: it is susceptible to the effects of aging and
high temperatures, which degrade the accuracy of
SOC estimation and, consequently, reduce its overall
effectiveness. This limitation highlights the need
for future research into more sophisticated strategies,
particularly those based on machine learning, to
address these challenges.
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