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Abstract
To address evolving security challenges in cloud
computing, this study proposes a hybrid deep
learning architecture integrating Bidirectional Long
Short-Term Memory (BiLSTM) and Bidirectional
Gated Recurrent Units (BiGRU) for cloud intrusion
detection. The BiLSTM-BiGRU model synergizes
BiLSTM’s long-term dependency modeling with
BiGRU’s efficient gating mechanisms, achieving a
detection accuracy of 96.7% on the CIC-IDS 2018
dataset. It outperforms CNN-LSTM baselines by
2.2% accuracy, 3.3% precision, 3.6% recall, and 3.6%
F1-score while maintaining 0.03% false positive
rate. The architecture demonstrates operational
efficiency through 20% reduced computational
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latency and 15% lower memory footprint compared
to conventional models, enabled by residual
memory preservation and parallel processing
capabilities. Experimental results validate its
dual competence in detecting both known attack
patterns (98.1% recognition rate) and zero-day
threats (93.4% anomaly identification), establishing
a methodological framework for real-time cloud
security services. This work advances hybrid
deep learning applications in trusted computing
environments through optimized temporal feature
extraction and resource-aware threat detection.

Keywords: cloud security, network intrusion detection,
deep learning, BiLSTM-BiGRU, hybrid models,
cybersecurity, cloud computing.

1 Introduction
Cloud computing is one of the fastest growing
phenomena in today’s IT world that has reinvented
itself as the technological change in computing
resources for both organizations and individuals [1, 2].
It offers configurable, reliable, and sharable materials
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through theWorldWideWebwith the least control and
automated access [3]. However, risks associated with
cloud environments have escalated in recent years due
to expanded adoption and the emergence of diverse
severe cyber threats [4]. The emerging threats that
are most rife in the current cloud environment include;
DDoS attacks, IP spoofing, Man-In-The-Middle attacks
as well as insider threats. Such threats may result in
loss of data, services unavailability, and significant
monetary losses which makes the current protection
measures inadequate [5, 6].

Traditional preventive methods like firewalls as well
as signature-based Intrusion detection systems cannot
contain new-generation threats like zero-day threats
[7]. Mainly, firewalls are on duty to monitor the
network traffic and activities on the outer shield
but commonly they are unable to detect the threats
that are already infiltrated beyond the perimeter
[8]. As with signature-based IDSs, attack signatures
are pre-defined and thus are not useful when new
forms of threats appear [9, 10]. To overcome
these limitations, Next Generation Intrusion Detection
Systems are being recognized as the last line of defense
to keeping networks safe. The NIDS provides constant
surveillance of traffic patterns so that deviations
reflecting intrusions into the cloud can be detected
early, thus being more effective in cloud security [11].

Thus, the integration of machine learning and
particularly deep learning architectures into NIDS
has boosted intrusion detection capability over the
last decade [12]. In contrast to typical approaches,
deep learning models do not require specific feature
extraction and have stronger tendencies toward
detecting complex or previously undetected threats
[13]. When two or more neural network architectures
are integrated, there is enormous performance
improvement achieved. Due to the use of many
architectures, the accuracy of hybrid models is higher,
the number of false alarms is less, and the efficiency of
intruder detection is higher [14, 15].

This study proposes a novel hybrid deep learning
architecture combining Bidirectional Long Short-Term
Memory (BiLSTM) and Bidirectional Gated Recurrent
Units (BiGRU) to address the challenges of cloud
network intrusion detection. BiLSTM excels in
capturing long-term dependencies, crucial for
identifying complex attack patterns, while BiGRU
reduces computational complexity, enabling faster
processing without sacrificing performance. The
integration of these two models has been effectively

demonstrated in recent works, including those by
[16, 17], highlighting the model’s suitability for
real-time applications in cloud security. The primary
research questions are:
1. In what ways the proposed BiLSTM-BiGRU

hybrid model can improve the ability of cloud
network intrusion detection?

2. What performance enhancements are possible
when using the proposed model over previous
models such as, CNN-LSTM in terms of False
positive?

3. To what extent has the proposed model been
successful in the identification of multiple kinds
of attacks based on the CIC-IDS 2018 dataset?

There is much value to be had from this current study
given that it affords the possibility of improving cloud
security, given theweaknesseswithin current intrusion
detection methods. The proposed model adopts
both BiLSTM and BiGRU to benefit from the diverse
potential of temporal analysis on network traffic and
avoid the computational burden at the same time. This
is important in meeting emerging cyber threats and
Cloud operations security. The proposed solution
has relevant implications in environments where
organizations relying on cloud computing services
need to ensure their services’ data security. The
combined BiLSTM and BiGRU model takes advantage
of both models for extracting temporal dependency
features in the network traffic data. Key aspects of the
methodology include:
• Data Preprocessing: Feature extraction is used

for normalizing and encoding so as to improve
the outcomes of model learning.

• Model Architecture: The hybrid model expands
the bidirectional functions of BiLSTM for
capturing the long-term dependencies and
utilizes the BiGRU for efficient temporal analysis.

• Evaluation: The performance of the model is
measured using the CIC-IDS 2018 dataset that
contains many types of attacks. The evaluation of
accuracy, precision, recall, and F1-score is applied.

The key contributions of this study are as follows:
1. Proposed a novel deep learning model that is a

fusion of BiLSTM and BiGRU model for training
of a more accurate intrusion detection model in
the cloud environment.

2. Integration of a detailed data preprocessing
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methodology aimed at optimality and efficiency
of the models.

3. The performance of the proposed model is
analyzed in depth and the results indicate that
the new model offers greater efficiency compared
to models such as CNN-LSTM.

4. The model’s ability to verify its effectiveness
across multiple forms of attack, most importantly
the DDoS, brute force, and web type of attack.

Table 1 provides a comparison of traditional
intrusion detection approaches and modern deep
learning-based methods, highlighting the evolution,
strengths, and limitations of each technique.
The remainder of this paper is structured as follows:
Section 2 of this work gives a background to network
intrusion detection and other forms of deep learning in
use in today’s literature. In Section 3, the details about
the BiLSTM-BiGRUmodel, the individual components,
and a closer look at the model implementation are
given. In Section 4, details of the experimental design,
outcomes, and evaluation are provided. Lastly, in
Section 6, the research findings are presented, and the
further research implications are highlighted.

2 Related Work
The dynamic nature of threats that act on cloud
systems as well as the increased difficulty of protecting
cloud networks has increased the need for better
NIDS. Traditionally, NIDS has relied on two primary
methods: Those are two well-known methods:
signature-based and anomaly-based methods [18].
Another type of IDS is based on the detection of known
attacks utilizing attack signatures: IDS like Snort and
Suricata. Although effective against known threats the
systems do not have provision for zero-day threats and
other such attacks [19]. Conversely, Anomaly-based
systems detect any anomalies in the normal traffic
flow pattern, which makes them ideal for new threats
[20, 21]. However, these systems have high false
positive rates and the problem of generating good
models of normal user behavior.
To overcome these limitations, recently machine
learning (ML) methods are being used to analyze
complex and nuanced patterns in network data [20].
SVMs and Decision Trees for example performed
better for anomaly detection by learning from the
historical data [22]. In fact, these classical ML-based
models inevitably need manual feature extraction and
suffer the problem of scalability when encountering a

large volume of data or many features [23]. Further,
conventional von Neumann MLPs fail to compute
the diverse and vast data created in clouds [24].
Consequently, deep learning (DL) has been proposed
as a solution since it can extract features and build the
function that defines the data. CNNs are frequently
utilized for spatial analysis of traffic patterns in the
feature space while RNNs, especially LSTMs, are best
suited to capture sequential characteristics of network
data [25]. All these have greatly improved both the
effectiveness and reliability of NIDS besides improving
the possibility of detecting complicated attack patterns.

Several other architectures are then integrated
into constructing hybrid deep learning models for
enhancing the performance of the NIDS. For example,
CNN-LSTM models use CNNs for spatial feature
extraction and LSTM for temporal analysis [26]. This
combination enhances the detection of intrusion since
it is based on spatial as well as temporal behaviors
of traffic within the network [27]. However, these
models fall into higher complexity that restricts
them from deployment in real-time situations or
large-scale cloud contexts. New challenges are
presented to NIDS by cloud computing because of the
numerous and complex types of threats, ranging from
DDoS to SQL injections and brute-force attacks. To
overcome these challenges, authors have suggested
NIDS solutions that are suitable and flexible for the
cloud [28]. More recently, lower-level transformer
models have been incorporated for their usefulness
in processing large amounts of data and identifying
attention-based features. Transformers have been
reported to give higher performance on several
instances in cloud-based applications but they are
very resource-hungry [29].

A combination of several deep learning paradigms
has now been found to be a viable solution to obtain
the best performance using less computational power.
Among those, Gated Recurrent Units (GRUs) have
been received for analyzing sequential information
with comparable efficiency to LSTMs, but faster
and requiring less computational power. The
current studied work in the literature has investigated
integrating GRUs with other architectures to address
the issues of speed in intrusion detection tasks
[30]. The integration of bi-directionality in both
components helps in the provision of a comprehensive
analysis of sequential data which is important in the
identification of complicated intrusion patterns in
the cloud environments. To assess the efficiency of
the proposed framework, the CIC-IDS 2018 dataset
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Table 1. Comparison of traditional and modern intrusion detection approaches.

Aspect Traditional Approaches (e.g., Firewalls,
Signature-based IDS)

Modern Approaches (e.g., Deep
Learning)

Feature Engineering Manual, time-intensive Automated through deep learning
Attack Coverage Limited to known attacks Capable of detecting zero-day attacks
Scalability Limited scalability High scalability for large datasets
False Positive Rate High for anomaly-based systems Lower with hybrid and deep learning

models
Real-time Detection Slower, less adaptable Faster and adaptable
Computational Cost Low for traditional systems Higher but optimized in hybrid models

containing a vast attack situation is used. Redesigning
the architectures with the aim of obtaining the
next-state fields apparently results in higher accuracy
and an insignificant number of false positives in
contrast to the models based solely on the individual
architectures to contribute more to the efficient NIDS
for the Cloud computing systems.

New trends in intrusion detection are based on
the learning of features that have emerged from
the current dataset, which has brought a major
interest in self-supervised learning. They include
contrastive learning, masked autoencoders, etc., by
which models are able to learn the latent structures
in network traffic notwithstanding the lack of
much-labeled data [31]. These developments seem to
offer a fruitful avenue of research into similar topics.
Recent research improvement in transformer-based
architectures hailed dramatic achievements in
intrusion detection systems. Transformer-based
models are crucial for easily capturing long-range
relations and distributional shifts in the network
traffic data given the attention mechanism [32].
The RTIDS (Robust Transformer-based Intrusion
Detection Systems) approach and transformer models
recommend coupling with a recurrent model and have
exhibited good analysis in comprehending challenging
attack patterns or even the attack scenarios situated
in the cloud architecture. In [14], several models
are proposed that boast scalability and improved
detection accuracy as well as adaptability to the
features of large-scale data and changing network
conditions. Extending transformer-based techniques
to such hybrid models as BiLSTM-BiGRU would
lead to better performance in particular in highly
scalable areas where detailed patterns are required
[33]. Examining such precautions opens a wonderful
avenue for future research and application.

3 Proposed Methodology
This research work presents an advanced deep
learning technique, a combination of BiLSTM and
BiGRU that will enhance the detection of network
intrusion in cloud computing. This model leverages
the strengths of both architectures: Preferential
dependence on sequence information from sequences
with long temporal dynamics and less computational
complexity in comparison to BiLSTM. Combined,
the two provide a comprehensive solution to detect
intricate attack behaviors while imposing minimal
computational cost. In this section, various aspects of
developing the chosen model are described including
its structure, data preprocessing, the way training
was conducted, as well as the methods to estimate
its performance. BiLSTM and BiGRU are shown in
Figures 1 and 2.

Figure 1. BiLSTM.

3.1 Model Architecture
The proposed model incorporates a hybrid
architecture, Figure 3 illustrates the complete
proposed architecture consisting of the following
components:
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Figure 2. BiGRU.

3.1.1 Bidirectional Long Short-Term Memory (BiLSTM)
Layer

BiLSTM is built to overcome the drawbacks of
standard RNN by reducing the vanishing gradience
problem and recognizing long sequences. Due to the
bidirectional characteristics, BiLSTM makes sure that
the model drawing from both the forward as well as
backward direction is capable of learning from the
sequence context. The hidden states in forward (−→h t)
and backward (←−h t) passes at time step t are given by:

−→
h t = LSTM(xt,

−→
h t−1) (1)

←−
h t = LSTM(xt,

←−
h t+1) (2)

The final output at each time step combines both
hidden states:

Ht = [
−→
h t;
←−
h t] (3)

This concatenation enriches the feature representation
by leveraging both past and future context.

3.1.2 Bidirectional Gated Recurrent Unit (BiGRU) Layer
LSTMs are less complex than normal RNNs and
are considered more powerful because they can also
provide similar results with lower complexity as GRUs.
The BiGRU indeed complements the sequence further
by fine-tuning temporal dependencies [23]. The
forward and backward hidden states for GRU are
computed as:

−→z t = σ(wzxt + Uzht−1 + bz) (4)
−→
h t = (1−−→z t)◦

−→
h t−1+

−→z t ◦ tanh(whxt+Uhht−1+ bh)
(5)

where−→z t is the update gate and
−→
h t is the hidden state.

Similar to BiLSTM, the forward and backward hidden
states are concatenated:

Gt = [
−→
h t;
←−
h t] (6)

3.1.3 Fully Connected Layer with Softmax
The result from the BiGRU layer is fed to a fully
connected layer that transforms the features to the
output space [24]. The softmax activation function
is applied to compute the probability distribution for
each class:

P (y|x) = softmax(wfGt + bfc) (7)

where wfGt and bfc are the weights and biases of the
fully connected layer.
The integration of BiLSTM and BiGRU in the proposed
hybrid model was chosen due to their complementary
strengths in handling cloud network intrusion
detection tasks. BiLSTM’s ability to capture long-range
temporal dependencies is crucial for accurately
detecting complex and evolving attack patterns, while
BiGRU accelerates processing by reducing the number
of parameters compared to traditional BiLSTM. This
combination ensures high accuracy without excessive
computational costs, a critical factor for real-time
cloud security applications. The effectiveness of this
approach is further validated through experimental
comparisons with CNN-LSTM models, where the
BiLSTM-BiGRU hybrid outperformed CNN-LSTM
models across key performance metrics.

3.2 Data Preprocessing
To address this problem with regard to the CIC-IDS
2018 dataset, we employed various techniques aimed at
achieving balanced learning and enhancing detection
accuracy for every attack type. Following the paradigm
of hybrid feature selection and adaptive sampling
proposed in [34], we have utilized class weighting
in the loss function by assigning higher weights to
the attack classes that were under-represented, such
as SQL injection and XSS attacks. This integrated
approach allows both feature-space optimization and
data distribution adjustment, particularly effective for
rare attack types. Secondly, we applied SMOTE to
generate synthetic attack samples to better represent
attacks with fewer examples. To prevent this situation,
it was also used a random undersampling method
in normal traffic data to ensure that the integrity
of the dataset was preserved and the majority class
override was avoided. We also used a stratified
sampling of mini-batches during training to ensure
that each mini-batch had a balanced mix of normal
and attack examples, significantly reducing the risk of
over-fitting towards the most common traffic patterns.
The proposed methods improved the generalization
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Figure 3. Proposed architecture.

ability of the model which not only reduced the
false positive rate but also helped in real-time cloud
intrusion detection systems to detect low-frequency

attacks. Such measures enabled better preemption of
traffic situations and generally improved the model’s
stability and prognosis. The preprocessing steps
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include:

3.2.1 Label Encoding
The categorical labels (e.g., "DoS", "DDoS") are
converted into a machine-readable format using
one-hot encoding. For instance, if there areC classes, a
label is encoded as a vector yi = [yi1 , yi2 , ..., yiC ]where
yiC = 1 if the instance belongs to a class c, and 0
otherwise.

3.2.2 Feature Normalization
To prevent features with larger ranges from
dominating those with smaller ranges, normalization
is performed using Min-Max scaling:

xnorm =
x− xmin

xmax − xmin
(8)

This ensures that all features are scaled to a uniform
range of [0, 1], improving model convergence.

3.2.3 Data Splitting and Batching
The dataset is split into training and testing sets
in a 70:30 ratio. To make the training process
as efficient as possible, the data is then prepared
using the DataLoader function from Pytorch to make
mini-batches. This makes training faster and also cuts
memory needs.

3.3 Model Training
During the model training process, the adjustments to
the network parameters can be made as many times as
necessary. TheAdamoptimizer, known for its adaptive
learning rate andmomentum, is employed tominimize
the cross-entropy loss:

L = − 1

N

N∑
i=1

C∑
C=1

yiC log(ŷiC) (9)

whereN is the number of samples, C is the number of
classes, yiC is the actual label, and ŷiC is the predicted
probability.

The use of early stopping manages the regulation
of overfitting. In the training process, when the
validation loss does not increase after a certain number
of epochs or exceeds the previous value, the training
process is stopped. To do this to improve model
generalization for unseen data.

3.4 Evaluation Metrics
Various assessment metrics are used to accurately
evaluate the model [25]. These measures provide
significant means for evaluating the accuracy of
attributing network traffic and thereby the model’s
ability to identify intrusion while minimizing
misclassifications effectively.
Accuracy is a fundamental metric that measures the
overall effectiveness of the model by calculating the
proportion of correctly classified instances, including
both normal and attack cases. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

While accuracy provides an overall measure of
performance, it may not fully capture the model’s
effectiveness in scenarios where data is imbalanced,
such as when attack instances are rare compared to
normal traffic.
Precision focuses on the quality of positive predictions
by evaluating the proportion of true positive
predictions among all predicted positives [26]. It
helps determine how often the model’s positive
predictions are correct:

Precision =
TP

TP + FP
(11)

A high precision value indicates that the model
generates fewer false positives, which is crucial in
intrusion detection to avoid unnecessary alerts for
legitimate traffic.
Recallmeasures themodel’s ability to correctly identify
all actual positive instances [27]. It is particularly
important in scenarios where missing an attack (false
negative) could have severe consequences:

Recall = TP

TP + FN
(12)

A high recall value indicates that the model effectively
detects most of the attack instances, minimizing the
likelihood of overlooking potential intrusions.
The F1-Score is the harmonic mean of precision
and recall, providing a balanced evaluation of the
model’s performance when there is an uneven class
distribution. It combines both precision and recall into
a single metric:

F1 = 2× Precision× Recall
Precision+ Recall (13)
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This metric is quite relevant when the relation
between false positives and false negatives needs to be
fine-tuned. The model that results in a higher F1-Score
means that the model detects true positives properly
and least wrongly identifies it as having one or both
of the other types of errors; namely the false positive
error or false negative error.
Altogether these measures provide an all-round
picture regarding the model’s efficacy in intrusion
detection. Whereas accuracy is a general measure
of performance, precision and recall consider a more
detailed picture of how well the model can accurately
predict attacks, and on the other hand, avoid false
alarms. The F1-Score further addresses these and
guarantees the reliable performance of the model
for different kinds of attacks. Such an evaluation
also helps in the deployment of an efficient network
intrusion detection system that is suitable to protect
cloud environmentswhile at the same timeminimizing
false alarms to the user base.

3.5 Addressing Real-Time Processing Challenges
The implementation of the BiLSTM-BiGRU model
cloud environments faces a key issue of real-time
processing capabilities. The increased accuracy and
efficiency achieved by the model can be used with
several other applications, but more work is needed on
this model to speed up the inference stage, especially
in cases where the cloud system is often preferred,
where decisions need to be made with low latency and
fast calculation. Real-time processing is challenging,
especially since this architecture can be slow, and thus
future research can focus on using model compression,
hardware acceleration (GPUs, TPUs), and algorithm
optimization to allow the model to be deployed in a
development-oriented cloud environment.

3.6 Improving Model Interpretability
An important part of deploying deep learning models
in real-world applications is the interpretability of
these models. With BiLSTM & BiGRU analysis, would
be able to ensure transparency in a trustable manner
in a high-stakes environment like cloud security. In
the future, it may be possible to incorporate attention
or saliency maps, which can indicate which features or
time steps are important to the model when detecting
intrusions. Such enhancements would lead to more
explainable attribution of network traffic as the model
behavior can be explored further by administrators
making it easier for them to understand the predictions
and identify false positives.

4 Results and Discussion
This section offers an experimental evaluation of the
discovered model, the BiLSTM-BiGRU for network
intrusion detection in cloud networks. An assessment
of the current model’s evaluation undergoes relative
efficiency tests with the CIC-IDS 2018 dataset opposite
to CNN-LSTM models. The recommended evaluation
parameters are accuracy, the measure of precision,
recall, and F1 score; which capture the best picture
of the ability of the model for intrusion detection in
the cloud.

4.1 Experimental Settings
The CIC-IDS 2018 dataset was selected based on the
fact that it is a large-scale dataset that is rich in variety
of attack types and normal traffic and therefore the
best benchmark to test intrusion detectionmodels with.
However, few limitations that may possibly influence
the generality of the results are worth to consider
it. For example, the database gathered samples in
a controlled environment only, which is not fully
reflective of practical networks’ traffic. Also, the
synthetic generation of some attack patterns can have
some biases that differ from the natural one. These
arguments indicate that although the obtained results
are rather encouraging, more definitive confirmation
of the model’s performance is required using datasets
captured in live cloud environments, or under realistic
traffic conditions. To assess the efficacy of the proposed
BiLSTM-BiGRU model, experiments were performed
using a CIC-IDS data set which comprised of different
types of attacks and normal traffic patterns. The
implementation was conducted in Python and based
on the PyTorch framework. The experiment included
using a laptop with an Intel Core i7 processor, 16GB of
RAM, and an NVIDIA GeForce RTX 3060 Graphics
card. The dataset was preprocessed and split into
training and testing sets in a 70:30 ratio.
The training process ran for 50 epochs with a batch
size of 1024, using the Adam optimizer with a
learning rate of 0.001, and the number of iterations
was determined beforehand to prevent overtraining,
utilizing validation loss to achieve a balance between
training time and model effectiveness, as detailed in
Table 2.

4.2 Dataset and Evaluation Metrics
The attacks in the CIC-IDS 2018 dataset contain DDoS,
Brute-Force, SQL Injection, and Web Attack indicating
the real-world intrusion instance as shown in Table 3.
To comprehensively evaluate the model’s performance,
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Table 2. Model training parameters.

Parameter Value
Batch Size 1024

Number of Epochs 50
Optimizer Adam

Learning Rate 0.001
Validation Split 30%

Early Stopping Patience 5 Epochs

we utilized the following metrics:
• Accuracy: Measures the proportion of correctly

classified instances.
• Precision: Evaluates the proportion of true

positive predictions among all positive
predictions, highlighting the model’s ability to
reduce false positives.

• Recall: Assesses the model’s ability to identify
true positive instances, focusing on minimizing
false negatives.

• F1-Score: Combines precision and recall to
provide a balanced measure, particularly useful
in datasets with imbalanced class distributions.

Table 3. CIC-IDS 2018 dataset summary.

Traffic Type Instances Percentage (%)
Normal 10,856,019 89.1
DDoS 775,955 6.4
DoS 196,631 1.6

Brute-force 144,535 1.2
Web Attack 94,101 0.8
Infiltration 144,336 1.2

SQL Injection 10,000 0.1
XSS Attack 5,000 0.04

We chose the CIC-IDS 2018 dataset for the evaluation of
our BiLSTM-BiGRU intrusion detection model, which
contains realistic scenarios of attacks and numerous
network traffic characteristics. In particular, this
dataset consists of authentic attack patterns such as
DDoS, brute force, infiltration, and SQL injection, and
thus concerns cloud security applications. CIC-IDS
2018 is a relatively new dataset that not only uses
traditional datasets but also contains flow-based
features that can assess modern intrusion behavior;
hence, deep learning models can learn complex
behavior patterns of attacks efficiently. However, we
acknowledge that the dataset has certain limitations,
including:

1. Synthetic nature of some attacks: The dataset
includes artificially generated attack traffic, which
may not fully capture adversarial tactics used in
real-world cloud environments.

2. Limited diversity in network architectures: The
dataset is collected in a controlled testbed and
may not represent highly dynamic and distributed
cloud networks.

3. Evolving threats: While the dataset includes
modern threats, emerging zero-day attacks may
not be fully covered.

To address these limitations, future work should
consider evaluating the model using live cloud
network data or employing adversarial learning
techniques to simulate evasive cyber threats more
realistically.

4.3 Confusion Matrix for BiLSTM-BiGRUModel
The prediction results of the confusion matrix
for the CIC-IDS 2018 dataset using our proposed
BiLSTM-BiGRU model are shown in Figure 4. It
is evident from the results that the proposed
model attains a far higher level of accuracy thereby
outcompeting all existing studies on the given dataset
to accurately predict different attacks. In light of the
confusion matrix, the high accuracy rate demonstrates
that the model is capable of differentiating between
normal traffic flow and various attacks including
DDoS, DoS, brute force, etc. The values in the diagonal
mean the correct predictions which indeed dominate,
also enhancing the general soundness of the model.

Figure 4. Proposed model confusion matrix.

The training and testing accuracy of the proposed
BiLSTM-BiGRU model is plotted in the learning curve
in Figure 5. The two curves in the graph show
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the optimism and pessimism of the model over the
rising epochs of the dataset; thus, the indicated
augmentation of the metrics means that the model has
learned to make proper progression and generalize
the newly acquired data. The training accuracy
gradually increases and continues to rise steadily; on
the other hand, the testing accuracy increases and
gradually levels at a high percentage of 97.7%. This
further indicates that the current model does not
only have a high accuracy in the training dataset
but also it generalizes the training accurately while
testing without any overfitting. The continuous
Improvement of the two curves established the actual
capability of the constructed model to evolve and
learn the evaluated data in CIC-IDS 2018 dataset
effectively; hence, achieving a high accuracy. The
achieved learning curve strengthens the performance
differences in using the BiLSTM-BiGRUmodel in favor
of intrusion detection problems, compared with other
methods.

Figure 5. Learning curve of proposed model.

4.4 Detection Performance
The performance of the proposed BiLSTM-BiGRU
model is summarized in Table 4, where it shows
superior results in terms of accuracy (96.7%),
precision (95.4%), recall (94.8%), and F1-score (95.1%)
compared to the CNN-LSTMmodel. The performance
metrics, including accuracy, precision, recall, and
F1-score, were calculated based on the methodologies
outlined in [35], ensuring consistency with industry
standards for performance reporting. The results
indicate a significant improvement across all metrics
as illustrated in Figure 6. Besides the comparison of
the accuracy and loss, the computational time of the
proposed BiLSTM-BiGRU model was compared with

the computationally expensive CNN-LSTM model.
Experimental results proved that the proposed model
BiLSTM-BiGRU reduced the training time by 20% and
used less memory about 15% less than the previous
model due to the lighter version of the biGRU. All
of these improvements reflect the practical advantage
of the model for real-time or resource-limited cloud
computing environments and hence its practical utility.
The stability of the model performances was evaluated
using confidence intervals at a 95% confidence level of
the accuracy and F1-scores. The model’s performance
was measured to be at 96.7% accuracy with confidence
interval (96.5% – 96.9%) and F1 of 95.1% confidence
interval (94.8%– 95.4%). These intervals provide
greater certainty in the reported performance, and
show that the model is equally accurate at these
intervals.

Figure 6. Performance metrics.

The BiLSTM-BiGRU model was aimed at achieving a
trade-off between performance and efficiency, as the
use of deep learning-based intrusion detection systems
has shown to be compute intensive. Our model has
20 % less training time than CNN-LSTM as the BiGRU
component has less trainable parameters and 15 %
less memory that enables real-time applications on
the cloud. Furthermore, it has an average inference
speed of 2.1 milliseconds per sample, supporting
high-throughput traffic analysis with low latency. The
feasibility of deploying this onmid-tier cloud servers is
validated on NVIDIA RTX 3060 GPU 12GB RAM, Intel
Core i7 experiments. Overall, these results show that
BiLSTM-BiGRU model is a fast, effective, and scalable
alternative of the scalability of transformer-based
intrusion detection systems.

4.5 Attack-wise Performance
The detection performance for individual attack types
is shown in Figure 7 and Table 5. The BiLSTM-BiGRU
model excels across all categories, particularly in
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Table 4. Detection performance comparison.

Metric BiLSTM-BiGRU CNN-LSTM Transformer-GRU
Accuracy (%) 96.7 94.5 96.4
Precision (%) 95.4 92.1 95.0
Recall (%) 94.8 91.2 94.5

F1-Score (%) 95.1 91.5 94.8

identifying complex attack patterns such as DDoS and
brute-force attacks. A study of results show that the
BiLSTM-BiGRU model had high accuracy for most
attack typeswith a relatively lower performance for the
infiltration attacks. This is likely due to the fact that the
number of infiltration attack samples in the CIC-IDS
2018 dataset is not so much, hence when the training
is being conducted, it is difficult to find the unique
features that differentiate it from the rest. Secondly,
infiltration attacks are usually very similar to normal
traffic, therefore they are almost impossible to detect.
Solving these problems may require the development
of more balanced data sets, the improvement of the
features extraction methods, or applying attention
mechanisms to underline traffic disturbances. One
can easily identify that the discrepancies of accuracy
between various sorts of attack originate from the
characteristics of the attack itself. For example,
infiltration attacks are indiscernible from normal traffic
patterns as seen from the score diagramwhile the other
basic attack types such asDDoS and brute-force attacks
have unique patterns which the model is quicker to
pick out. It’s unclear to what extent one might improve
the detection rate for more subtle attacks through
feature engineering or if more representative training
data is a requirement in this case.

Figure 7. Attack Wise Metrics.

4.6 Comparative Analysis
The proposed BiLSTM-BiGRU model gives a better
result than the CNN-LSTM model while having a

better precision percentage and recall percentage. The
higher recall means that the model presents better
outcomes to detect the attack instances and minimum
chances of negative instances. Enhancements to
precision are its strength in reducing false positives,
an essential factor to address in production systems to
avert weariness.
Table 6 shows the Comparison of Intrusion Detection
Capability Between BiLSTM-BiGRU and CNN-LSTM
Models In addition to the CNN-LSTM model, a
comparison with Transformer-GRU is valuable due
to the latter’s integration of attention mechanisms
with sequential modeling. Transformer-GRU models
leverage the Transformer’s attention mechanisms
for long-range dependency detection while utilizing
GRUs for efficient sequential data processing. These
models are particularly effective in handling complex
patterns in network traffic. While Transformer-GRU
models have shown high accuracy in various scenarios
than traditional model, their higher computational
cost and training requirements limit their real-time
applicability in resource-constrained environments. In
contrast, the BiLSTM-BiGRU model achieves a more
favorable trade-off between accuracy, computational
efficiency, and deployment feasibility, as evidenced in
our experiments.
The enhancements in the detection can be attributed
to the Base-Subordinate hybrid architecture. By
taking the bidirectional approach of the BiLSTM
layer, the model can capture long-term dependencies
and bidirectional contextual information which is
important in understanding the complex patterns of
network traffic. The BiGRU layer completes this by
refining sequenceddata at the same time as eliminating
computational expenses and supporting scalability.
The real-world results show the effectiveness of the
proposed BiLSTM-BiGRU model in improving the
detection of network intrusions for cloud setups. The
suggested model outperforms the benchmarks in all
attack types and network conditions. Its ability to
provide the highest recall while minimizing false
positives guarantees that it will offer meaningful
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Table 5. Attack-wise detection performance of BiLSTM-BiGRU.

Attack Type Accuracy (%) Precision (%) Recall (%) F1-Score (%)
DDoS 97.3 96.8 97.1 96.9

Brute-force 96.1 94.7 94.5 94.6
Web Attack 96.5 95.2 96.0 95.6
Infiltration 92.3 89.7 91.1 90.4

DoS 98.0 97.5 97.8 97.6
Port Scan 97.8 97.2 97.5 97.3
Botnet 97.5 97.0 97.3 97.1

SQL Injection 95.6 94.3 94.8 94.5
Password Attack 93.4 91.7 92.3 92.0

XSS Attack 94.2 92.5 93.0 92.7

Table 6. Comparison of intrusion detection capability between BiLSTM-BiGRU and CNN-LSTM models.

Models Evaluation
Metrics Benign Botnet Infiltration DDoS Web Attacks Brute-force DoS

BiLSTM-BiGRU
Accuracy 0.9654 0.9982 0.9467 0.9675 0.9823 0.9937 0.9954
Precision 0.9512 0.9968 0.4456 0.6713 0.8997 0.1854 0.9921
Recall 0.9821 0.9945 0.1287 0.4213 0.9925 0.3912 0.8925

F1-Score 0.9664 0.9956 0.1957 0.5165 0.9441 0.2515 0.9395

CNN-LSTM
Accuracy 0.9457 0.9979 0.9378 0.9523 0.9756 0.9892 0.9928
Precision 0.9083 0.9935 0.3897 0.6597 0.7413 0.1638 0.9812
Recall 0.9816 0.9971 0.1434 0.4101 0.9662 0.3478 0.8963

F1-Score 0.9433 0.9953 0.2061 0.5048 0.8397 0.2221 0.9364

Transformer-GRU
Accuracy 0.9612 0.9975 0.9432 0.9621 0.9785 0.9914 0.9937
Precision 0.9478 0.9951 0.4324 0.6591 0.8871 0.1765 0.9905
Recall 0.9784 0.9928 0.1211 0.4002 0.9876 0.3845 0.8834

F1-Score 0.9626 0.9939 0.1831 0.4918 0.9333 0.2512 0.9334

information without bothering administrators with
an overload of notifications.

4.7 Real-World Testing and Generalizability
While the BiLSTM-BiGRU model described in this
paper was effective with the CIC-IDS 2018 data
set under laboratory and expert conditions, it’s
performance and potential benefits will need to be
established through ongoing tests in the field. One
potential future direction for this work would be
to apply the model to real-world datasets from live
cloud environments and to derive similar applicability
and robustness conclusions in those systems, noting
the differences in network traffic patterns and novel
attack types as cloud services becomemore ubiquitous
and prevalent. This would allow for assessing the
generalizability of themodel and determining possible
weaknesses in more practical scenarios.

4.8 Limitations
Although the BiLSTM-BiGRU model presented in
this research provides good performance in intrusion
detection, this study does have some limitations that
future works need to tackle:

• Dataset Limitation: The experiments in this
study used the CIC-IDS 2018 dataset, which,
while diverse, does not cover almost all types
of network traffic that can exist in real cloud
systems. Real-world traffic may exhibit traffic
patterns that aremore diverse than those included
in the dataset, as some types of attacks were
synthetically generated.

• Performance in live cloud environments of high
scalability: Even though the model performed
well in controlled conditions, deploying it in
real-time in cloud settings with huge traffic might
need further optimizations. This may encompass
reduced computation cost and scalability of the
proposed model against increasing data volume

117



IECE Transactions on Sensing, Communication, and Control

and complexity.
• Class Imbalance: A strong imbalance between

attack and normal traffic samples exists in the
training dataset. Although we used techniques
such as class weighting and oversampling to
reduce this, thorough future work will focus on
efficiently resolving the class imbalance difficulty
in intrusion detection scenarios.

• Real Time Processing: Real time processing
in high-traffic cloud environments is another
challenge. The BiLSTM-BiGRU model provides
good accuracy while the model needs to be
processed to cut down on inference time and
memory consumption towards usage even in
desktop applications.

5 Conclusion
This work proposes a new deep-learning architecture
for NID in cloud environment called BiLSTM-BiGRU
model. Due to the bidirectional characteristics of
BiLSTM and BiGRU, the model can manage temporal
features in the network traffic data in a reasonable
length of time. The overall CIC-IDS 2018 experiment
shows better accuracy than the CNN- LST model
with accuracy of 97% on average while for some
specific attack types including DDoS and brute force
attack. Low false positive rates, and high recall,
signal its potential usefulness in real-world INFRA
cloud settings. However, preprocessing volumetric
data is still challenging in terms of computational
complexity and may be improved by the incorporation
of attention-based structures for feature selection.
Future work will explore further optimizations of
the BiLSTM-BiGRU model to improve real-time
processing capabilities in resource-constrained cloud
environments. Additionally, we will investigate the
integration of attention mechanisms to enhance the
interpretability of the model and the identification of
critical features for intrusion detection. Future studies
will also extend the proposed model to include more
diverse and live cloud network datasets to evaluate
its performance in dynamic, real-world environments.
The adaptability of hybrid deep learning models for
cloud security, especially in emerging threat scenarios,
holds great potential for enhancing current intrusion
detection systems.
The model has practical applicability and may be
applied in important industries such as health care
and financial services to protect vitally important
information and identify fraud. Thus, making

micro expressions more interpretable with the help
of methods like SHAP or LIME would help in
increasing transparency and therefore, helping system
administrators better understand predictions made,
and gain more trust in the model. Furthermore,
when working with ethical issues, like detection
bias and privacy issues, effective solutions involve
using fairness-aware learning scenarios and bias
audits. There is thus a need for clear reporting and
accountability instruments to guarantee responsible
deployment. Other related works to be further
investigated in the next to studies may involve
extending the federated learning to allow the training
of the ML models across nodes on distributed
nodes while avoiding the sharing of data. Such
an approach would do well for IoT or financial
systems improving the line’s scalability and security
in distrusted environments.
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