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Abstract
Image fusion aims to integrate complementary
information from different sensors into a single
fused output for superior visual description and
scene understanding. The existing GAN-based
fusion methods generally suffer from multiple
challenges, such as unexplainable mechanism,
unstable training, and mode collapse, which
may affect the fusion quality. To overcome these
limitations, this paper introduces a diffusion
model guided cross-attention learning network,
termed as DMFuse, for infrared and visible
image fusion. Firstly, to improve the diffusion
inference efficiency, we compress the quadruple
channels of the denoising UNet network to achieve
more efficient and robust model for fusion tasks.
After that, we employ the pre-trained diffusion
model as an autoencoder and incorporate its
strong generative priors to further train the
following fusion network. This design allows the
generated diffusion features to effectively showcase
high-quality distribution mapping ability. In
addition, we devise a cross-attention interactive
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fusion module to establish the long-range
dependencies from local diffusion features.
This module integrates the global interactions
to improve the complementary characteristics
of different modalities. Finally, we propose a
multi-level decoder network to reconstruct the fused
output. Extensive experiments on fusion tasks
and downstream applications, including object
detection and semantic segmentation, indicate that
the proposed model yields promising performance
while maintaining competitive computational
efficiency. The code and data are available at
https://github.com/Zhishe-Wang/DMFuse.

Keywords: image fusion, diffusion model, feature
interaction, attention mechanism, deep generative model.

1 Introduction
Infrared sensors detect hidden target characteristics
through thermal radiation and work under various
weather and lighting conditions. The acquired images
are often exhibit low contrast and lack fine details. On
the contrary, visible sensors offer high-resolution scene
perception through light reflection imaging. However,
under adverse weather or camouflage conditions,
visible sensors are difficult to distinguish obvious
targets from the background environment. The image
fusion technology can integrate the complementary
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information from different sensors into a single image,
which can achieve superior visual description and
scene understanding. A common application of
fused images is to provide faster and more accurate
visual interpretation for both human observers and
computer systems. In addition, this technology has
been extended into other visual tasks, such as person
re-identification [1], object detection [2], and RGBT
tracking [3], and so on.

Over the past decades, traditional algorithms,
including multi-scale transformation [4], sparse
representation [5], subspace decomposition
[6], optimization model [7], hybrid-based [8],
and other methods [9], have been proposed for
infrared and visible image fusion. Although these
methods achieved great processes and can fulfill the
requirements of most scenarios, they still exhibit
certain limitations. On the one hand, these methods
usually develop the same mathematical model to
indiscriminately extract image features, and rarely
consider the inherent distinctiveness of different
modality images, which limits the fusion performance
improvement. On the other hand, the fusion rules
or activity level measurement need to be manually
designed. This strategy potentially compromises the
objectivity and reliability of image fusion output,
which is unsuitable for some complicated scenarios
and subsequent decision-making applications.

In recent years, deep neural networks have experienced
rapid adoption in the field of image fusion.
Generally, the mainstream deep learning-based
models include autoencoder (AE)-based [10], [11],
convolutional neural network (CNN)-based [12],
[13], Transformer-based [14], [15], and generative
adversarial network (GAN)-based [16], [17] methods.
AE-based methods employ the encoder-decoder
framework to extract and reconstruct features, and
design a fusion layer to integrate their respective
features. Nevertheless, the fusion strategies are
still hand-crafted. CNN-based methods usually
concatenate source images in the input stage as
an image-level framework or integrate features in
the fusion stage to form a feature-level framework.
Different to CNN, Transformer-based methods employ
a self-attention mechanism to model the long-range
dependencies, and achieve state-of-the-art (SOTA)
performance. However, the above methods are
non-generative fusion schemes, which cannot take
advantage of strong generative ability. Image fusion
as a generative task, GAN-based methods employ
adversarial training to constrain the same distribution

of fused output and source images. Nevertheless,
the tradeoff between generator and discriminator is
difficult to follow during training, which presents
a challenge for achieving controlled generation.
Moreover, unexplainable mechanism and mode
collapse of GANs seriously affect the fusion quality.

Recently, denoising diffusion probabilistic models
(DDPM) [18] have demonstrated remarkable
advances in generating hopeful synthetic samples.
Unlike the existing GAN-based methods, the
generation process of DDPM is interpretable as it
relies on denoising principles, which can effectively
achieve controllable high-quality and high-fidelity
generation. Furthermore, DDPM does not require
discriminative constraints, thereby avoiding the
common issues of unstable training andmode collapse
often encountered by GANs. Specifically, Zhao et al.
[19] formulated fusion task into an unconditional
generation problem, and integrated the hierarchical
Bayesian model in likelihood rectification. Yue et
al. [20] constructed the multi-channel distribution
based on diffusion model to extract complementary
information for high color fidelity fusion tasks.
Although these methods achieve surprising fusion
performance, some drawbacks still need to be
addressed. On the one hand, due to the posterior
sampling procedure, their fusion models usually
require extensive storage space and long inference
times. On the other hand, these methods only leverage
the generative capacity of diffusion mode while
failing to consider the contextual interactions of
multi-modality images, resulting in limited fusion
performance.

To address these issues, we introduce a simple
yet strong fusion baseline, namely diffusion model
guided cross-attention learning network, termed as
DMFuse. In the first training stage, to alleviate the
strains on storage space and inference process, we
directly compress the quadruple channels of diffusion
UNet, and train a robust model using the MS-COCO
dataset [21]. Because this dataset encompasses
diverse object categories, abundant image data, and
various visual scenarios, it aids in bolstering the
generalization ability of the diffusion model for fusion
tasks, even when model parameters are compressed.
In the second training stage, instead of relying on
mainstream convolution operations or self-attention
mechanisms, we employ the pre-trained diffusion
model as an autoencoder to generate the diffusion
features, which can seamlessly transfer its high-quality
generation ability to the subsequent fusion network.
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Figure 1. The comparative schematic diagram of the proposed model with U2Fusion [12], YDTR [15] and DDFM [19].

In addition, we develop a cross-attention interactive
fusion module to aggregate the diffusion features
of infrared and visible images, which can model
the global dependencies from local contexts and
improve the complementary characteristics of different
modalities. Finally, a multi-level decoder network
is proposed to progressively reconstruct the fused
output.

To demonstrate the superiority of the proposed
DMFuse, we compare it with the CNN-based method,
i.e., U2Fusion [12], Transformer-based method, i.e.,
YDTR [15], and diffusion model-based method,
i.e., DDFM [19]. Figure 1 illustrates a schematic
diagram for comparison. U2Fusion and YDTR are
non-generative schemes that focus on modeling local
features and local-global dependencies, respectively.
Although the fused results preserve visible details
well, they fail to retain the infrared target brightness.
DDFM formulates the fusion task into unconditional
generation and samples a fusion image from the
posterior distribution. However, the generated result
still exhibits limited preservation of target brightness.
In contrast, the proposed model can simultaneously
enable rich detail preservation and considerable
intensity control. In summary, the main contributions
of our work are threefold.

• We introduce a novel diffusion model guided
fusion baseline. The pre-trained diffusion
model is employed as an encoder to provide a
powerful distribution mapping, thereby grafting
its generation ability for fusion tasks.

• We develop a cross-attention interactive fusion
module to model the global dependencies
from local diffusion features, thus effectively
strengthening and integrating the complementary
characteristics of different modalities.

• We train a more efficient and robust diffusion
model with different strategies. Extensive
experiments demonstrate that DMFuse achieves
SOTA fusion performance as well as competitive

operational efficiency.
The rest of this paper is schemed as follows. Section
2 mainly discusses the non-generative and generative
fusion schemes. In Section 3, the framework of the
proposed model is elaborated. In Section 4 and Section
5, experimental comparisons and relevant conclusions
are given, respectively.

2 Related Work
This section provides an overview of the related work
that is closely related to the proposed method. From a
generative standpoint, we can roughly categorize the
existing works as non-generative and generative fusion
schemes.

2.1 Non-Generative Fusion Scheme
AE-based methods generally follow the traditional
framework, and employ a pre-trained encoder-decoder
network to extract and reconstruct features. For
example, Li et al. developed DenseFuse [10]
and NestFuse [11] where dense blocks and nest
connections are introduced to enhance feature
representation. Zhao et al. [22] presented AUIF
in which the traditional optimization model was
mapped to a trainable neural network by the algorithm
unrolling. To improve fusion performance, Jian et
al. elaborated SEDRFuse [23] and DDNSA [24] in
which attention-based fusion strategies are employed
to better strengthen the complementary characteristics
of different modalities. However, these methods need
to design the fusion strategies manually, restricting
their practical applications.
CNN-based methods usually propose image-level or
feature-level frameworks to implement unsupervised
learning. Typically, Xu et al. [12] introducedU2Fusion,
which concatenated source images as an input, and
employed a pre-trained VGG-16 network to measure
information preservation degree for supervising the
similarity constraint. Li et al. [13] elaborated
RFN-Nest, which proposed a two-stage training
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strategy to train the encoder-decoder framework and
fusion network, respectively. They also presented
LRRNet [25], which formulated the fusion task
as optimized decomposition and network learning
problems. An et al. [26] introduced MRASFusion,
which designed a residual attention fusion module for
feature interactions. Chen et al. developed IVIFD [27]
for a joint fusion and detection task. Zhu et al. [28]
proposed MGRCFusion, which utilized a multi-scale
group residual convolution module to exploit finer
deep-level features.
Transformer-based methods mainly depend on
the self-attention mechanism to model the global
dependencies and maintain long-range context. Pang
et al. [14] introduced SDTFusion, which employed
dense Transformer blocks to extract the global features.
Tang et al. presented YTDR [15] and DATFuse
[29], which proposed a serial CNN-Transformer
architecture to aggregate local and global features.
Ma et al. [30] elaborated SwinFusion, which designed
self-attention and cross-attention units to integrate
intra- and inter-domain interactions. Tang et al.
[31] developed a multi-branch network based on
CNN and Transformer to extract the local and global
information for multi-modality fusion. In addition,
Liu et al. [32] introduced SegMiF, which proposed
a multi-interactive framework for the joint tasks of
fusion and segmentation.
The aforementioned methods tend to design efficient
network structures [10], [11], [26], [28], novel fusion
rules [23], [24], different training strategies [13], [22],
[25], [27], long-range modeling [14], [15], [30], [31],
and multi-task learning [12], [32]. The core is to
employ convolutional or self-attention operations to
discriminate model local, global, or joint features.
However, due to the lack of ground truth and the fact
that these methods are non-generative fusion schemes,
the lack of in-depth exploration of generative models
limits the potential fusion performance improvement.

2.2 Generative Fusion Scheme
GAN-based methods generally apply adversarial
training to generate a fused image that follows the
same distribution as the source images. Ma et al.
[16] firstly devised FusionGAN, which employed
a generator to obtain the fused image, and used
a discriminator to determine whether the fused
output has a similar distribution to source images.
Meanwhile, they also introduced TarDAL [33], which
designed a target-aware dual adversarial learning
network for the joint problems of fusion and detection.

Wang et al. presented ICAFusion [34], CrossFuse
[35], and FreqGAN [36], which introduced attention
mechanisms and frequency information to implement
feature interaction and iterative optimization. These
methods focus on the design of flexible networks, such
as generator architecture [16], attention mechanism
[34], [35], and multi-task learning [33]. However,
the GAN-based methods suffer from unexplained
mechanism, unstable training, and mode collapse,
which adversely impacts the fusion quality.
Diffusion-based methods formulate fusion tasks
as a conditional generation problem within the
diffusion sampling framework, which can overcome
the common problems of GANs. For example, Yue
et al. [20] presented Dif-Fusion, which directly
introduced the multi-channel data construction into
a diffusion process, and achieved a fused output
with high color fidelity. Zhao et al. [19] devised
DDFM, where an unconditional generation module
and a conditional likelihood rectification module are
designed to deliver favorable results. These methods
leverage the generative ability of diffusion mode, but
present significant time-consuming issues in terms of
storage space and inference processes, and do not take
into account the contextual interactions. Different from
them, the proposed model employs a more efficient
and robust diffusion model to graft its high-quality
generation ability for fusion tasks. Meanwhile, we
design a cross-attention interactive fusion module
to strengthen the complementary characteristics of
different modalities. Therefore, the proposed model
achieves superior fusion performance while requiring
less computational costs.

3 Methodology
In this section, we elaborate on the overall workflow
of the fusion baseline, including network overview,
cross-attention interactive fusion module, and loss
function.

3.1 Network Overview
As depicted in Figure 2(a), DMFuse consists of three
core components, i.e., pre-trained diffusion model,
multi-level decoder, and cross-attention interactive
fusion module. Given the input infrared and visible
images I0 = {Ii, Iv}, the forward process of the
diffusion model gradually adds Gaussian noise to the
input image I0, and generates noisy image It = {Iit , Ivt }
and its distribution P (It|It−1) at timestep t.
After that, we employ the diffusion model encoder to
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Figure 2. The overall workflow for the proposed model. The diffusion encoder is employed as autoencoder to extract the
diffusion features from different modality images. And these features are fed into cross-attention interactive modules
(CAIMs) to generate the fusion features. Finally, the fused output is reconstructed by a multi-level decoder network.

extract multi-level diffusion features of infrared and
visible images, termed as Φl

i and Φl
v, and fed them

into cross-attention interactive fusion module (CAIM),
which is shown in Figure 2(b), to generate the fusion
features Φl

f . Finally, a multi-level decoder network is
proposed to reconstruct the final fused outputs, which
is formulated by Eq.(1).

If = C[Φ1
f , U(C[Φ2

f , U(C[Φ3
f , U(C[Φ4

f , U(Φ5
f )])])])]

(1)
where C(·) and U(·) denote the convolutional and
upsampling operations. [·] indicates the channel
concatenation. Next, we will describe the training
process of the diffusion model.

3.2 Diffusion model encoder
The diffusion model implements the variational
inference on a Markovian chain, which includes both
forward and backward processes. In the forward
process, Gaussian noise is incrementally added to the
input image I0 until it is fully destroyed within T
timesteps. By using the reparameterization trick, the
simplified distribution of noisy image It at each time
step t can be directly derived from the input image I0
sampling, which is formulated by Eq.(2).

P (It|I0) = N (It;
√
αtI0, (1− αt)X) (2)

where N is a Gaussian distribution, αt denotes the
variance schedule, and αt =

∏t
i=1 αi, t ∈ [1, T ]. X

represents the standard normal distribution.
Technically, the forward process aims to degrade the
image data into an isotropic Gaussian distribution by
adding noise. On the contrary, the backward process
attempts to eliminate the degradation by a denoising
network. During the backward process, a series of

denoising operations are performed on the noisy image
It to obtain back It−1. The corresponding distribution
of It−1 given It can be formulated by Eq.(3).

Q(It−1|It) = N (It;µθ(It, t), σ
2
tX) (3)

where µθ(It, t) and σ2t are the mean and standard
deviation of Q(It−1|It).
During the training phase, the noise ε ∼ N (0, X)
and the timestep t ∼ U({1, · · ·T} are sampled from
the standard normal distribution and the uniform
distribution, respectively. The noisy image It and the
timestep t are fed into the denoising network εθ(·, ·),
which is a UNet framework. A simple supervised loss
can be formulated by Eq.(4).

Ldiff =
∥∥ε− εθ(√αtI0 +

√
1− αtε, t)

∥∥
2

(4)

The diffusion model consists of a five-level U-Net
framework, where the decoder backbone is subjected
to randomly sampled noise levels to reconstruct the
denoised diffusion features. Therefore, we employ the
diffusion model as an encoder to extract multi-level
diffusion features from noised infrared and visible
images. The formulation is expressed by Eq.(5).

{Φl
i, Φl

v} = Dif{Iit , Ivt } (5)

where Dif{·} denotes the diffusion model encoder
operation.
In particular, the diffusion model encoder is capable
of generating more robust feature representations
over the CNN encoder. Additionally, to accelerate
inference process of the diffusion model, we compress
the channel numbers of each layer to 1/4 of the original.
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A comprehensive discussion regarding the diffusion
model encoder and its training strategies will be
presented in the ablation study.

3.3 Cross-attention interactive fusion module
After training the diffusion model, we employ it
as an encoder and freeze its parameters while
proceeding to train the fusion network. Themulti-level
diffusion features are then utilized as input for the
cross-attention interactive fusion modules, facilitating
global interactions. Inspired by CCNet [37], we
aggregate contextual dependencies together for all
pixels in its criss-cross path. More importantly, we
exchange the query features of different modalities
to capture their interactive cross-attention maps,
which effectively strengthens their complementary
characteristics to promote better fusion performance.
As shown in Figure 2(b), given the diffusion features
Φl
i and Φl

v ∈ RC×H×W , we first perform two
convolution layers with 1×1 filters to achieve their
query and key features, i.e., {Qli,K l

i} and {Qlv,K l
v} ∈

RC
′×H×W , where H andW represent the height and

width of feature maps, and the channel C ′ is less than
C for dimension reduction. After that, we exchange
the feature mapsQli andQlv of different modalities and
further generate their respective cross-attention maps
Ali and Alv ∈ R(H+W−1)×(H×W ) via Affinity opertions.
Taking the infrared modality as an example, at the
position n within the spatial dimension of infrared
features K l

i , we can achieve a vector K l
i,n from itself

and a set Qlv,n from visible features Qlv, which are in
the same column or row with position n. Then, the
Affinity opertions can be formulated by Eq.(6) and
Eq.(7), respectively.

dli,m,n = K l
i,nQ

l
v,m,n (6)

dlv,m,n = K l
v,nQ

l
i,m,n (7)

where {dli,m,n, dlv,m,n} ∈ {Dl
i, D

l
v} denote the degree

of correlation between infrared and visible features
and their reverse order, {Qli,m,n, Qlv,m,n} ∈ RC

′ stand
for themth element of Qli,n and Qlv,n,m = [1, · · · , H +

W − 1], and {Dl
i , Dl

v} ∈ R(H+W−1)×(H×W ). Then,
we employ a softmax layer on Dl

i and Dl
v across

the channel dimension to calcuate the cross-attention
maps Ali and Alv, respectively.
Subsequently, another convolution layer with 1 × 1
filters is used for the diffusion features {Φl

i, Φl
v} to

generate {V l
i , V

l
v} for feature adaptation. Similarly, we

can also obtain the vetors {V l
i,n, V

l
v,n} ∈ RC and sets

{V l
i,m,n, V

l
v,m,n} ∈ R(H+W−1)×C at their spatial position

n. Thus, we apply an multiplication operation and a
skip connection to collect the contextual information
of different modalities, which are expressed by Eq.(8)
and Eq.(9), respectively.

Φl,c
i =

H+W−1∑
m=0

Ali,m,nV
l
i,m,n + Φl

i,n (8)

Φl,c
v =

H+W−1∑
m=0

Alv,m,nV
l
v,m,n + Φl

v,n (9)

where Φl,c
i and Φl,c

v denote the global cross-attention
features of infrared and visible modalities. Finally, we
concatenate them to generate the fusion features Φl

f .

3.4 Loss function
To train the fusion model, we employ structural
similarity (SSIM) loss, intensity loss, and gradient
loss to supervise the network. Concretely, SSIM loss
(Lssim) is used to constrain the structural similarity
between fused result If and source images Ii, Iv, which
is defined by Eq.(10).
Lssim = ω1(1− ssim(If , Ii)) + ω2(1− ssim(If , Iv))

(10)
where ssim(·) denotes the structural similarity
operation. ω1 and ω2 are set to 0.5.
Meanwhile, the intensity loss Lint is designed to
maintain more valuable pixel intensity information
from source images, and its formalization is expressed
by Eq.(11).

Lint =
1

HW
‖If −mean(Ii, Iv)‖1 (11)

wheremean(·) denotes the average operation.
Moreover, the gradient loss Lgrad is proposed to
transfer as many details as possible from different
modalities, which is formulated by Eq.(12).

Lgrad =
1

HW
‖|∇If | −max(|∇Ii| , |∇Iv|)‖1 (12)

where ∇ is the Sobel gradient operator. max(·) and
‖·‖1 stand for the maximum and L1-norm operations,
respectively.
Finally, the total fusion loss can be expressed by
Eq.(13).

Lfusion = λ1Lssim + λ2Lint + λ3Lgrad (13)
where λ1, λ2 and λ3 are the hyperparameters, which
are used to balance the three losses.
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Figure 3. Visual descriptions of DMFuse with other SOTA competitors on the TNO benchmark.

4 Experimental Results and Analysis
This section introduces the correlative experimental
configurations and comparative validations of fusion
tasks and downstream applications. The ablation
studies are also deeply discussed.

4.1 Experimental Configurations
In the training phase, we first train the diffusion model
on the MS-COCO benchmark. This dataset includes
more than 80000 complex scenario images. The
training parameter settings are consistent with DDPM
[18]. After that, we then train the fusion model on the
TNO benchmark. To augment the training dataset, we
take a sliding step of 12, crop the images into patches of
size 256 × 256 and normalize their gray value range to
[-1, 1]. This process yields a total of 18813 patch pairs
for training. The batch size and number of epochs are
set to 4 and 16, respectively. The model is optimized
using the Adam optimizer. In the loss function,
we empirically set λ1, λ2, and λ3 to 1, 4, and 20.
Additionally, the pre-trained diffusionmodel generates
diffusion features at three different time steps, i.e., 5, 50,
and 100. All experiments are conducted on a platform
equipped with an NVIDIA GeForce GTX 3090, Intel
I9-10850K, and 64 GB memory.
In the testing phase, we employ the TNO 1, M3FD
2 and Harvard MIF 3 benchmarks, and select 25,
40 and 50 image pairs to evaluate the effectiveness
and superiority of the proposed model. In addition,

1[Online]. Available: https://figshare.com/articles/
TN_Image_Fusion_Dataset/1008029

2[Online]. Available: https://github.com/dlut-dimt/TarDAL
3[Online]. Available: http://www.med.harvard.edu/AANLIB/

home.html.

seven SOTA competitors, including the non-generative
schemes, U2Fusion [12], RFN-Nest [13], YDTR
[15], and DATFuse [29], the generative schemes,
FusionGAN [16], Dif-Fusion [20], and DDFM
[19], are selected to compare with the proposed
model. Moreover, we also employ eight metrics,
namely entropy (EN) [38], standard deviation (SD)
[39], phase congruency (PC) [40], feature mutual
information based on pixel (FMIp) [41], Qe [42],
Qabf [43], multi-scale structural similarity (MS-SSIM)
[44], and visual information fidelity (VIF) [45] for
quantitative verification. In the follow-up experiments,
the red bold and blue underline indicate the optimal
and suboptimal values, respectively.

4.2 Results on TNO Benchmark
We first conduct experiments on the TNO benchmark
to showcase the effectiveness of the proposed DMFuse.
Three representative examples, namely Nato_camp,
Street, and Kaptein_1123, are selected for subjective
description, and their contrastive results are shown
in Figure 3. The CNN-based methods, i.e., U2Fusion
and RFN-Nest, focus on modeling local features using
image-level and feature-level frameworks, respectively.
Although they manage to preserve visible details, they
tend to lose brightness in the infrared targets. The
Transformer-based methods, i.e., YDTR and DATFuse,
attempt to integrate local and global features to achieve
better visual effects. However, they still struggle
to effectively control the brightness information.
FusionGAN aims to retain target brightness but
sacrifices visible detail information potentially due
to unstable training. DDFM integrates inference
solution and diffusion sampling within the same
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Figure 4. Quantitative comparisons of DMFuse with other SOTA competitors on the TNO benchmark.

Figure 5. Visual descriptions of DMFuse with other SOTA competitors on the M3FD benchmark.

iterative framework to generate fusion images directly,
but it fails to effectively combine thermal radiation
information. Dif-Fusion constructs a multi-channel
data distribution and yields similar results to the
proposed model. In comparison, the proposed
model effectively preserves rich details and control
considerable intensity.

Subsequently, eight metrics previously mentioned
are used for the quantitative evaluation of fusion
performance, and the comparable results are presented
in Figure 4. The proposed model is described by
the red dotted line. Obviously, the proposed model
demonstrates excellent performance across all metrics.
The corresponding EN, FMIp, Qe, Qabf, MS-SSIM,
VIF rank first, and SD, PC rank second, which follow

behind Dif-Fusion and DATFuse, respectively. The
optimal Qe, Qabf, and MS-SSIM indicate that the
proposed model can transfer edge, gradient, and
structural information into the fused results from
source images. The optimal EN, FMIp, and suboptimal
PC demonstrate that the proposed model can preserve
significant details and meaningful information. The
optimal VIF and suboptimal SD reveal that the
proposed model has better visual performance and
contrast definition. Quantitative experiments confirm
its superiority, aligning with the above qualitative
observations.

4.3 Results on M3FD Benchmark
We further carry out experiments on the M3FD
benchmark, and compare the proposed model with
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other competitors to verify its generalization ability.
For the color image fusion, we first transfer the RGB
visible image to the YCbCr color space, and return
it after the Y channel is integrated with the infrared
image. Figure 5 gives the subjective comparison results
of three examples, namely 03878, 03989, and 00762.
The proposed method offers significant advantages
in terms of detail preservation and intensity control.
For the salient pedestrian targets, the proposed model
preserves high-brightness target characteristics and
distinct contour edges. Meanwhile, for the background
details, such as trees, windows, and handrails, it
also gets the clearest detail description. In addition,
Figure 6 describes the objective comparison results.
The proposed model achieves the top ranking for
all the metrics except for EN and SD, which are in
arrears of Dif-Fusion. Both subjective and objective
experiments demonstrate that the proposed model
yields promising fusion performance and transcends
other SOTA competitors.

4.4 Results on Harvard MIF Benchmark
In this section, we conduct experiments on the
Harvard MIF benchmark to further verify the
generalization of the proposed model. Figure 7
gives the subjective comparison results of three
examples, namely MRI_CT_21, MRI_PET_32, and
MRI_SPECT_48. Compared with other methods,
the proposed model remains effectively the soft
tissue texture information presented in MRI images
and highlights the areas of high-density contrast
enhancement in T images. Table. 1 presents
the quantitative results of different fusion methods.
Obviously, DMFuse obtains the optimal performance
in terms of EN, SD PC, Qe, Qabf and VIF. The
metrics FMIp andMS-SSIM rank second, which follow
behind DDFM and Dif-Fusion, respectively. Both
subjective and objective experiments demonstrate that
the proposed model yields excellent performance in
the medical image fusion tasks.
In summary, the above experiments on the TNO ,
M3FD and Harvard MIF benchmarks confirm the
superior performance and generalization ability of
the proposed model for different lighting and object
categories. The main reasons are twofold. On the
one hand, we use the MS-COCO dataset to train the
diffusion model for more stable performance. More
importantly, we employ the diffusion model to guide
the fusion network. The diffusion features fully exhibit
a strong distribution mapping capacity, and provide
extra feature details for fusion tasks. Therefore, the

fused results preserve rich details from source images.
On the other hand, the designed cross-attention
interactive fusion module can effectively implement
the global interactions of different modalities. Under
the supervision of the loss function, the fusion images
achieve better visual effects with high-brightness
targets and unambiguous details. As a result, DMFuse
makes the fusion image easy to distinguish foreground
objects and background edges.

4.5 Downstream Application
In addition to fusion performance evaluation, we
also explore the positive role of image fusion for
downstream applications. Specifically, we analyze the
effects of other visual tasks, such as object detection
and semantic segmentation.

Image fusion for object detection: We first discuss
how image fusion affects object detection performance.
The experiments are implemented on the M3FD
benchmark, which contains 4200 images annotated
with 33,603 objects, including six classes, i.e., People,
Car, Bus, Motorcycle, Truck and Lamp. The YOLOv5
[46], [47] network is used as the detection baseline,
and mean average precision (mAP) is employed as
the evaluation metric. Especially, mAP@0.5 represents
the precision value at an intersection-over-union (IoU)
threshold of 0.5, and mAP@[0.5:0.97] indicates the
mean value at IoU thresholds of between 0.5 and 0.97,
with steps of 0.05. For a fair comparison, we employ
the detectionmodel to source images and fused results.
Figure 8 presents the visual results of object detection.
For the representative objects, such as People and
Car, the proposed model achieves higher precision
values than source images and other competitors,
indicating that our fused results are more conducive
to object detection tasks. Moreover, the objective
comparison results are shown in Table 2. Almost all
fusion methods yield good detection performance,
and their mAP values are much better than those
using only infrared or visible images. Notably, the
proposed model outperforms other competitors in
terms of mAP value, which has an improvement of
1.09% and 1.77% for mAP@0.5 and mAP@[0.5:0.97].
This indicates that the proposed model can fully
discover unique information from different modalities,
and offer effective complementary characteristics for
the detector to achieve better performance.

Image fusion for semantic segmentation: We further
evaluate the proposed DMFuse with other competitors
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Figure 6. Quantitative comparisons of DMFuse with other SOTA competitors on the M3FD benchmark.

Figure 7. Visual descriptions of DMFuse with other SOTA competitors on the Harvard MIF benchmark.

Figure 8. Qualitative object detection comparisons of source images and the fused results obtained by different methods.
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Table 1. Quantitative comparisons of DMFuse with other SOTA competitors on the Harvard MIF benchmark.
Models EN SD PC FMIp Qe Qabf MS-SSIM VIF
U2Fusion [12] 3.7566 33.8763 0.3735 0.8579 0.3093 0.3776 0.8552 0.2489
RFN-Nest [13] 4.1351 56.6246 0.2396 0.8616 0.2229 0.1983 0.8928 0.2256
YDTR [15] 4.1527 37.6520 0.4553 0.8648 0.3990 0.4267 0.8811 0.2597
DATFuse [29] 4.2113 54.9562 0.4360 0.8531 0.5040 0.6113 0.9262 0.2605
FusionGAN [16] 4.2226 44.7076 0.1375 0.8496 0.2095 0.1662 0.8079 0.1708
Dif-Fusion [20] 4.7231 60.7802 0.4513 0.8660 0.4644 0.6354 0.9559 0.2994
DDFM [19] 3.8027 56.4941 0.4622 0.8796 0.4725 0.6363 0.9507 0.3288
Ours 5.6969 61.8903 0.5438 0.8754 0.5546 0.7154 0.9545 0.3319

Table 2. Quantitative object detection comparisons of different methods on the M3FD benchmark.

Methods mAP@0.5 mAP@[0.5:0.95]
Person Car Bus Lamp Motorcycle Truck All Person Car Bus Lamp Motorcycle Truck All

Infrared 0.783 0.870 0.921 0.665 0.760 0.855 0.809 0.551 0.671 0.780 0.359 0.506 0.671 0.590
Visible 0.716 0.869 0.920 0.790 0.790 0.864 0.825 0.478 0.701 0.796 0.471 0.543 0.689 0.613
U2Fusion [12] 0.774 0.883 0.925 0.784 0.774 0.867 0.835 0.549 0.717 0.799 0.474 0.547 0.701 0.631
RFN-Nest [13] 0.772 0.881 0.924 0.790 0.775 0.865 0.835 0.544 0.716 0.798 0.467 0.541 0.700 0.628
YDTR [15] 0.768 0.885 0.925 0.781 0.766 0.859 0.831 0.546 0.714 0.800 0.473 0.539 0.700 0.629
DATFuse [29] 0.764 0.881 0.919 0.781 0.766 0.859 0.829 0.541 0.711 0.794 0.469 0.542 0.696 0.626
FusionGAN [16] 0.766 0.873 0.923 0.779 0.761 0.857 0.827 0.542 0.712 0.792 0.468 0.538 0.691 0.624
Dif-Fusion [20] 0.775 0.886 0.926 0.796 0.772 0.858 0.836 0.549 0.716 0.787 0.473 0.538 0.702 0.628
DDFM [19] 0.771 0.882 0.919 0.790 0.782 0.865 0.835 0.544 0.712 0.795 0.470 0.540 0.700 0.627
Ours 0.776 0.887 0.927 0.791 0.774 0.875 0.838 0.550 0.719 0.806 0.475 0.541 0.710 0.634

Figure 9. Qualitative semantic segmentation comparisons of DMFuse with other competitors on the FMB benchmark.

on the semantic segmentation task. A full-time
multi-modality benchmark (FMB) 4 collected from the
M3FD benchmark is proposed for the segmentation
baseline. The FMB dataset contains rich driving scenes
under different lighting andweather conditions, and is
labeled into fourteen categories. We select 1120 image
pairs as the training set and verify the segmentation
performance of different models on the 280 pairs.
The relevant experimental configuration is derived

4[Online]. Available: https://github.com/
JinyuanLiu-CV/SegMiF

from SegMiF [32]. The metrics, accuracy (ACC)
and intersection-over-union (IoU) are employed for
segmentation evaluation.

The qualitative semantic segmentation comparisons
are depicted in Figure 9. For the representative
objects and details, such as pedestrians and buildings,
single-modality infrared and visible images cannot
produce accurate classifications. However, the
fusion methods improve the semantic segmentation
performance to some extent. This indicates that
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Table 3. Quantitative semantic segmentation comparisons of different methods on the FMB benchmark.

Methods Road Sidewalk Lamp Sign Vegetation Sky Person Pole mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

Infrared 83.8 79.9 51.4 30.4 70.4 12.2 79.2 54.6 84.6 74.7 95.4 90.2 84.9 63.0 46.1 24.4 74.5 53.7
Visible 84.6 82.7 66.4 32.1 57.4 33.0 83.5 65.0 93.0 81.4 93.5 91.4 84.8 41.1 63.2 37.6 78.3 58.0
U2Fusion [12] 91.1 85.3 56.0 39.6 72.3 31.9 86.5 57.0 86.0 82.0 96.6 92.8 87.0 56.4 70.6 35.5 80.8 60.1
RFN-Nest [13] 84.7 76.3 62.1 36.3 80.4 24.9 77.8 68.3 91.9 82.2 96.7 93.9 85.6 60.8 70.1 39.2 81.2 60.2
YDTR [15] 83.9 81.3 72.4 33.5 61.6 27.8 73.3 66.4 89.7 84.0 95.6 93.9 83.4 58.5 74.7 39.0 79.4 60.6
DATFuse [29] 85.1 80.0 50.3 21.7 51.4 30.0 84.0 61.5 81.7 78.4 95.6 92.6 77.9 63.1 71.8 39.4 74.7 58.3
FusionGAN [16] 84.8 80.0 57.8 32.6 50.4 28.5 82.6 61.5 90.4 82.3 93.7 91.3 89.2 62.6 62.1 35.7 76.4 59.3
Dif-Fusion [20] 83.7 80.7 66.8 26.4 46.9 32.5 78.4 68.7 87.0 80.7 96.7 92.8 86.0 64.5 66.7 35.3 76.5 60.2
DDFM [19] 81.2 79.9 53.7 24.0 46.1 31.0 75.4 65.3 87.7 81.2 95.1 91.8 79.0 54.6 49.1 35.1 70.9 57.9
Ours 85.2 83.9 73.0 33.6 73.4 43.6 82.7 70.3 92.3 85.6 97.3 94.5 82.6 67.5 67.2 48.2 81.7 65.9

Figure 10. Visual comparisons of ablation experiments for two examples selected from the TNO and M3FD benchmarks.

the complementary characteristics of image fusion
facilitate the segmentation accuracy. More importantly,
the proposed model effectively classifies objects
and scenes with high accuracy, which is closest
to ground truth. Table 3 reports the quantitative
semantic segmentation comparisons. The numerical
results demonstrate the proposed model is ahead
of other SOTA competitors in terms of mACC and
mIoU. In short, the proposed model can exploit
and strengthen the complementary information of
different modalities, which generates a positive effect
on semantic segmentation.

4.6 Ablation Study
This section presents several specialized designs
incorporated into the proposed DMFuse, and
their effectiveness is evaluated through ablation
experiments that focus on the model architecture and
training strategy. The qualitative and quantitative
comparisons are also presented in this section.

Training on Different Datasets: To assess the
generalization performance of the diffusion model,
we train it on the different datasets, including TNO,
M3FD, and the proposed MS-COCO. From the results
of Figure 10 (c) and (d), the fusion images of TNO
and M3FD trained models exist in detail confusion
and color degradation to a certain extent. The
quantitative verification is compared in Table 4. A
typical phenomenon is that a fusionmodel trained by a
certain dataset maintains superior performance on the
corresponding testing. Overall, the proposed method
achieves more stable and outstanding performance on
different testing datasets.

Channel in Diffusion UNet: We compress the channel
numbers of diffusion UNet at each layer to 1/4
in our fusion model, and compare it with other
competitive models, i.e., original parameters, 1/2,
and 1/8. Noting that we omit the qualitative
descriptions because their results are similar. Table
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Table 4. Quantitative validations of different training datasets.
Testing Datasets Training Datasets EN SD PC FMIp Qe Qabf MS-SSIM VIF

TNO Benchmark
TNO 6.8466 35.7474 0.3086 0.9026 0.4073 0.5009 0.9090 0.4154
M3FD 6.8466 34.0896 0.3032 0.9002 0.3936 0.4767 0.9156 0.3901
MS-COCO (Ours) 6.9324 37.0730 0.3500 0.9060 0.4573 0.5467 0.9130 0.4233

M3FD Benchmark
TNO 7.0188 36.4068 0.2798 0.8538 0.2723 0.4244 0.8990 0.2786
M3FD 7.1955 40.2199 0.3149 0.8487 0.3697 0.5227 0.9195 0.3068
MS-COCO (Ours) 7.2045 40.6980 0.5056 0.8726 0.4821 0.6818 0.9392 0.4133

Table 5. Quantitative validations of different channels on the TNO benchmark.
Metrics EN SD PC FMIp Qe Qabf MS-SSIM VIF Params(M) FLOPs(G) Time(s)
Original 6.9135 37.6477 0.3845 0.9106 0.4861 0.5898 0.9150 0.4336 392.724 1516.136 74.110
1/2 6.9150 37.1946 0.3738 0.9084 0.4794 0.5754 0.9125 0.4296 98.680 382.052 6.403
1/4(Ours) 6.9324 37.0730 0.3500 0.9060 0.4573 0.5467 0.9130 0.4233 24.967 106.584 2.624
1/8 6.9402 36.9426 0.2405 0.8899 0.3849 0.4181 0.9036 0.3786 6.433 35.967 2.163

Table 6. Quantitative validations of component effectiveness.
Models EN SD PC FMIp Qe Qabf MS-SSIM VIF
w/o Dif 6.8480 35.1861 0.3196 0.8975 0.4735 0.4862 0.8830 0.4228
w/o CAIM 6.8574 35.9839 0.3155 0.8886 0.3477 0.4902 0.8985 0.3439
Ours 6.9324 37.0730 0.3500 0.9060 0.4573 0.5467 0.9130 0.4233

5 shows the quantitative validations on the TNO
benchmark. It can be observed that the fusion
performance decreases with the reduction in channel
numbers, while the model parameters and operation
efficiency exhibit an opposite trend. When the
channel parameter is reduced to 1/8, the performance
becomes comparable to other fusion methods, such as
Dif-Fusion and DDFM. In conclusion, the proposed
model suggests adopting 1/4 channel parameters to
achieve a better balance between fusion performance
and computational efficiency.
Verification of Each Component: We employ the
diffusion model to extract generative features and
develop a cross-attention interactive fusion module
to perform the global interactions. To verify their
effectiveness, we propose an UNet-style CNN encoder
to replace the diffusion model encoder and utilize
addition operation instead of CAIM, respectively. As
shown in Figure 10 (e) and (f), the fusion images
without the diffusion model, termed w/o Dif, lose
some target brightness and meaningful details, while
the fused results without CAIM, termed w/o CAIM,
have limited visual effects. Meanwhile, we visualize
the feature maps of diffusion model encoder and CNN
encoder (referred to as w/o Dif) in Figure 11. The
diffusion features (the first row) demonstrate obvious
advantages over CNN features (the second row) in the
characterization of infrared salient targets and visible

Table 7. The computational efficiency comparisons.

Methods Params.(M) FLOPs(G) Time(s)
TNO M3FD

U2Fusion [12] 0.659 43.17 1.722 4.646
RFN-Nest [13] 7.524 111.1 0.235 0.864
YDTR [15] 0.107 20.58 0.201 0.771
DATFuse [29] 0.011 1.185 0.019 0.047

FusionGAN [16] 1.314 57.09 0.513 0.988
Dif-Fusion [20] 434.2 726.1 4.820 17.21
DDFM [19] 988.3 2946 59.18 162.1
Ours 24.96 106.6 2.624 5.342

typical details. In addition, the quantitative results, as
shown in Table 6, indicate that the proposed model
achieves all the optimal values except for Qe, which
is behind w/o Dif. The experiments prove that both
diffusion model and CAIM are beneficial to fusion
performance improvement.

4.7 Efficiency Comparison
We also conduct experiments to evaluate the
operational efficiency of different methods, including
training parameters (Params.), floating-point
operations per second (FLOPs), and runtime (Time).
Table 7 presents their computational complexity. Note
that the computation of FLOPs is implemented by a
testing image with the size of 256×256. Compared
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Figure 11. The visualization maps of different encoders.

with the diffusion-based methods, the non-generative
fusion schemes, including U2Fusion, RFN-Nest,
YDTR, DATFuse, and the GAN-based method, i.e.,
FusionGAN, have a significant advantage in terms
of training parameters, FLOPs, and runtime. The
main reason is that the diffusion model requires many
iteration steps and consumes massive computational
resources. However, since we train a more efficient
model by compressing quadruple channels of
diffusion UNet, the proposed model has higher
operational efficiency than Dif-Fusion and DDFM,
indicating the effectiveness of model training.

5 Discussion
The diffusion model showcases powerful generative
capabilities and has manifested outstanding
performance in the domain of image fusion.
Nevertheless, its computational inefficiency constitutes
a significant challenge because of the large quantity of
iterative steps and the complexity of the calculations.
These factors lead to a slow diffusion process, which
restricts its applicability in scenarios demanding low
computing resources. In future works, we aim to
tackle these challenges by exploring optimization
strategies such as sampling optimization [48] to

reduce the number of iteration steps and latent space
transformation [49] to streamline computations. These
efforts will concentrate on enhancing computational
efficiency while maintaining or improving the quality
of the fused results.

6 Conclusion
This paper presents DMFuse, a novel diffusion
model-guided cross-attention learning network,
designed for infrared and visible image fusion. Unlike
existing methods, the proposed model involves
training a lightweight diffusion model to serve as an
autoencoder, effectively integrating its high-quality
generative capability into the fusion tasks. Moreover,
we develop a cross-attention interactive fusion module
that facilitates global interactions, strengthening
the complementary characteristics of different
modalities. We evaluate the performance of DMFuse
against seven SOTA methods on TNO, M3FD and
Harvard MIF benchmarks. The experimental results
validate the proposed model achieves predominant
fusion performance and competitive computational
efficiency. Furthermore, DMFuse exhibits positive
implications for downstream applications, including
object detection and semantic segmentation. In future
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work, we will explore the integration of diffusion
models with large language models (LLMs) [50],
introducing text descriptions as a semantic guide to
further enhance the quality of the fused images.
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