-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Journal of Composites Engineering and Sustainability
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Composites Engineering and Sustainability, Volume 1, Issue 1, 2025: 3-15

Open Access | Review Article | 19 May 2025
Upcycled Nanomaterials from Wastewater Treatment for Active and Smart Packaging- A Review
1 Department of Mechanical Engineering, PSN College of Engineering and Technology, Tirunelveli 627152, India
2 Department of Mechanical Engineering, Sethu Institute of Technology, Kariapatti, Madurai 626115, India
3 Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
4 Department of Food Technology, K S Rangasamy College of Technology, Namakkal 637215, India
* Corresponding Author: K. Arun Prasath, [email protected]
Received: 18 March 2025, Accepted: 15 April 2025, Published: 19 May 2025  
Abstract
Usage of nanomaterials in the wastewater treatment provides added value from the perspective of preparation and market perspectives, adding to the demand for sustainable and intelligent packaging solutions, resulting in a market interest in smart and active packaging based on the modification of nanoparticles derived from wastewater treatment. In this paper, the advantages and their applications for the fibrous nanomaterials recovered from wastewater treatment processes, physical/chemical properties, environmental advantages, as well as their potential purposes are investigated through case studies on smart and active packaging systems. Nanomaterials such as graphene derivatives, nanocellulose, nano chitosan and metal and metal oxide nanoparticles, synthesized and recovered from wastewater possess specific physicochemical characteristics that can be tailored for the development of new food packaging materials endowed with sensing, antibacterial and barrier functions. In turn, the paper addresses the scalability, safety and regulatory concerns by exploring a discussion of extraction techniques, materials characteristics and environmental and social impacts. This article also explains how these nanoparticles can be used in such a packaging to improve their sustainability, helping to make them a more environmentally sustainable option, as well as keep products for longer and increase their shelf life. In this paper, the potential of up-cycling and micro-fabrication technologies for giving birth to innovative green packaging repurposed from waste water management is demonstrated according to the circular economy principles.

Graphical Abstract
Upcycled Nanomaterials from Wastewater Treatment for Active and Smart Packaging- A Review

Keywords
nanomaterials
wastewater treatment
smart packaging
sustainability

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Deng, F., Shi, H., Guo, Y., Luo, X., & Zhou, J. (2021). Engineering paths of sustainable and green photocatalytic degradation technology for pharmaceuticals and organic contaminants of emerging concern. Current Opinion in Green and Sustainable Chemistry, 29, 100465.
    [CrossRef]   [Google Scholar]
  2. Dua, T. K., Giri, S., Nandi, G., Sahu, R., Shaw, T. K., & Paul, P. (2023). Green synthesis of silver nanoparticles using Eupatorium adenophorum leaf extract: characterizations, antioxidant, antibacterial and photocatalytic activities. Chemical Papers, 77(6), 2947-2956.
    [CrossRef]   [Google Scholar]
  3. El-Fallal, A. A., Elfayoumy, R. A., & El-Zahed, M. M. (2023). Antibacterial activity of biosynthesized zinc oxide nanoparticles using Kombucha extract. SN Applied Sciences, 5(12), 332.
    [CrossRef]   [Google Scholar]
  4. Fouda, A., Eid, A. M., Abdelkareem, A., Said, H. A., El-Belely, E. F., Alkhalifah, D. H. M., ... & Hassan, S. E. D. (2022). Phyco-synthesized zinc oxide nanoparticles using marine macroalgae, Ulva fasciata Delile, characterization, antibacterial activity, photocatalysis, and tanning wastewater treatment. Catalysts, 12(7), 756.
    [CrossRef]   [Google Scholar]
  5. Gao, Q., & Keller, A. A. (2020). Redesigning water disinfection using recyclable nanomaterials and metal ions: Evaluation with Escherichia coli. ACS ES&T Water, 1(1), 185-194.
    [CrossRef]   [Google Scholar]
  6. Huang, Y., & Keller, A. A. (2015). EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Research, 80, 159–168.
    [CrossRef]   [Google Scholar]
  7. Ibarra-Cervantes, N. F., Vázquez-Núñez, E., Gómez-Solis, C., Fernández-Luqueño, F., Basurto-Islas, G., Álvarez-Martínez, J., & Castro-Beltrán, R. (2024). Green synthesis of ZnO nanoparticles from ball moss (Tillandsia recurvata) extracts: characterization and evaluation of their photocatalytic activity. Environmental Science and Pollution Research, 31(9), 13046-13062.
    [CrossRef]   [Google Scholar]
  8. Jamzad, M., Mokhtari, B., & Mirkhani, P. S. (2023). Green synthesis of metal nanoparticles mediated by a versatile medicinal plant extract. Chemical Papers, 77(3), 1455-1467.
    [CrossRef]   [Google Scholar]
  9. Khan, K. A., Shah, A., Nisar, J., Haleem, A., & Shah, I. (2023). Photocatalytic degradation of food and juices dyes via photocatalytic nanomaterials synthesized through green synthetic route: a systematic review. Molecules, 28(12), 4600.
    [CrossRef]   [Google Scholar]
  10. Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., ... & Wei, B. (2002). Lead adsorption on carbon nanotubes. Chemical physics letters, 357(3-4), 263-266.
    [CrossRef]   [Google Scholar]
  11. Lu, Q., Xu, Q., Meng, J., How, Z. T., Chelme-Ayala, P., Wang, X., ... & Zhang, X. (2022). Surface microlenses for much more efficient photodegradation in water treatment. ACS ES&T Water, 2(4), 644-657.
    [CrossRef]   [Google Scholar]
  12. Mehmood, S., Ahmed, W., Rizwan, M., Bundschuh, J., Elnahal, A. S., & Li, W. (2024). Green synthesized zinc oxide nanoparticles for removal of carbamazepine in water and soil systems. Separation and Purification Technology, 334, 125988.
    [CrossRef]   [Google Scholar]
  13. Nguyen, T. H. A., Doan, V. D., Tran, A. V., Nguyen, V. C., Nguyen, A. T., & Vasseghian, Y. (2022). Green synthesis of Nb-doped ZnO nanocomposite for photocatalytic degradation of tetracycline antibiotic under visible light. Materials Letters, 308, 131129.
    [CrossRef]   [Google Scholar]
  14. Patel, S. K., Ritt, C. L., Deshmukh, A., Wang, Z., Qin, M., & Elimelech, M. (2020). The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy & Environmental Science, 13(6), 1694–1710.
    [CrossRef]   [Google Scholar]
  15. Fadlalla, M. I., Senthil Kumar, P., Selvam, V., & Ganesh Babu, S. (2019). Recent advances in nanomaterials for wastewater treatment. Advanced nanostructured materials for environmental remediation, 21-58.
    [CrossRef]   [Google Scholar]
  16. Siddiqui, J., Taheri, M., Alam, A. U., & Deen, M. J. (2022). Nanomaterials in smart packaging applications: a review. Small, 18(1), 2101171.
    [CrossRef]   [Google Scholar]
  17. Dizaj, S. M., Mennati, A., Jafari, S., Khezri, K., & Adibkia, K. (2015). Antimicrobial activity of carbon-based nanoparticles. Advanced pharmaceutical bulletin, 5(1), 19.
    [CrossRef]   [Google Scholar]
  18. Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., ... & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1-10.
    [CrossRef]   [Google Scholar]
  19. Saravanan, A., Kumar, P. S., Hemavathy, R. V., Jeevanantham, S., Jawahar, M. J., Neshaanthini, J. P., & Saravanan, R. (2022). A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere, 307, 135713.
    [CrossRef]   [Google Scholar]
  20. Bhatlawande, A. R., Ghatge, P. U., Shinde, G. U., Anushree, R. K., & Patil, S. D. (2024). Unlocking the future of smart food packaging: biosensors, IoT, and nano materials. Food Science and Biotechnology, 33(5), 1075-1091.
    [CrossRef]   [Google Scholar]
  21. Rossa, V., Ferreira, L. E. M., da Costa Vasconcelos, S., Shimabukuro, E. T. T., da Costa Madriaga, V. G., Carvalho, A. P., ... & de Melo Lima, T. (2022). Nanocomposites based on the graphene family for food packaging: historical perspective, preparation methods, and properties. RSC Advances, 12(22), 14084-14111.
    [CrossRef]   [Google Scholar]
  22. Bashir, O., Bhat, S. A., Basharat, A., Qamar, M., Qamar, S. A., Bilal, M., & Iqbal, H. M. (2022). Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues. Chemosphere, 292, 133320.
    [CrossRef]   [Google Scholar]
  23. Saleem, H., & Zaidi, S. J. (2020). Developments in the application of nanomaterials for water treatment and their impact on the environment. Nanomaterials, 10(9), 1764.
    [CrossRef]   [Google Scholar]
  24. Kumar, S., Basumatary, I. B., Sudhani, H. P., Bajpai, V. K., Chen, L., Shukla, S., & Mukherjee, A. (2021). Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends in Food Science & Technology, 112, 651-666.
    [CrossRef]   [Google Scholar]
  25. Amin, U., Khan, M. K. I., Maan, A. A., Nazir, A., Riaz, S., Khan, M. U., & Lorenzo, J. M. (2022). Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packaging and Shelf Life, 33, 100903.
    [CrossRef]   [Google Scholar]
  26. Bora, T., & Dutta, J. (2014). Applications of nanotechnology in wastewater treatment—a review. Journal of Nanoscience and Nanotechnology, 14(1), 613-626.
    [CrossRef]   [Google Scholar]
  27. Liu, Y., Zhu, Y., Xu, Z., Xu, X., Xue, P., Jiang, H., ... & Cheng, B. (2024). Nanocellulose based ultra-elastic and durable foams for smart packaging applications. Carbohydrate Polymers, 327, 121674.
    [CrossRef]   [Google Scholar]
  28. Nasrollahzadeh, M., Sajjadi, M., Iravani, S., & Varma, R. S. (2021). Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials, 401, 123401.
    [CrossRef]   [Google Scholar]
  29. Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46.
    [CrossRef]   [Google Scholar]
  30. Goutam, S. P., Saxena, G., Roy, D., Yadav, A. K., & Bharagava, R. N. (2020). Green synthesis of nanoparticles and their applications in water and wastewater treatment. Bioremediation of industrial waste for environmental safety: volume i: industrial waste and its management, 349-379.
    [CrossRef]   [Google Scholar]
  31. Sethy, N. K., Arif, Z., Mishra, P. K., & Kumar, P. (2020). Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Processing and Synthesis, 9(1), 171-181.
    [CrossRef]   [Google Scholar]
  32. Sikiru, S., Abiodun, O. A., Sanusi, Y. K., Sikiru, Y. A., Soleimani, H., Yekeen, N., & Haslija, A. A. (2022). A comprehensive review on nanotechnology application in wastewater treatment a case study of metal-based using green synthesis. Journal of Environmental Chemical Engineering, 10(4), 108065.
    [CrossRef]   [Google Scholar]
  33. Rathod, S., Preetam, S., Pandey, C., & Bera, S. P. (2024). Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment. Biotechnology Reports, 41, e00830.
    [CrossRef]   [Google Scholar]
  34. Omran, B. A., & Baek, K. H. (2022). Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. Journal of Environmental Management, 311, 114806.
    [CrossRef]   [Google Scholar]
  35. El Messaoudi, N., Ciğeroğlu, Z., Şenol, Z. M., Bouich, A., Kazan-Kaya, E. S., Noureen, L., & Américo-Pinheiro, J. H. P. (2024). Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption. In Advances in Chemical Pollution, Environmental Management and Protection (Vol. 10, pp. 305-345). Elsevier.
    [CrossRef]   [Google Scholar]
  36. Abel, S., Jule, L. T., Belay, F., Shanmugam, R., Dwarampudi, L. P., Nagaprasad, N., & Krishnaraj, R. (2021). Application of titanium dioxide nanoparticles synthesized by sol‐gel methods in wastewater treatment. Journal of Nanomaterials, 2021(1), 3039761.
    [CrossRef]   [Google Scholar]
  37. Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., ... & Vidić, J. (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2428-2454.
    [CrossRef]   [Google Scholar]
  38. Bakhtiari, S., Salari, M., Shahrashoub, M., Zeidabadinejad, A., Sharma, G., & Sillanpää, M. (2024). A comprehensive review on green and eco-friendly nano-adsorbents for the removal of heavy metal ions: synthesis, adsorption mechanisms, and applications. Current Pollution Reports, 10(1), 1-39.
    [CrossRef]   [Google Scholar]
  39. Bai, S., Lv, T., Chen, M., Li, C., Wang, Z., Yang, X., & Xia, T. (2024). Carbon quantum dots assisted BiFeO3@BiOBr S-scheme heterojunction enhanced peroxymonosulfate activation for the photocatalytic degradation of imidacloprid under visible light: Performance, mechanism and biotoxicity. Science of the Total Environment, 915, 170029.
    [CrossRef]   [Google Scholar]
  40. Chandrani, D. N., Ghosh, S., & Tanna, A. R. (2024). Green synthesis for fabrication of cobalt ferrite nanoparticles with photocatalytic dye degrading potential as a sustainable effluent treatment strategy. Journal of Inorganic and Organometallic Polymers and Materials, 34(7), 3100-3114.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Prasath, K. A., Shanawaz, A. M., Calaph, Y. C., Pradeesh, T. R., & Selvaraj, R. C. A. (2025). Upcycled Nanomaterials from Wastewater Treatment for Active and Smart Packaging- A Review. Journal of Composites Engineering and Sustainability, 1(1), 3–13. https://doi.org/10.62762/JCES.2025.447373

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 39
PDF Downloads: 9

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Composites Engineering and Sustainability

Journal of Composites Engineering and Sustainability

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.