-
CiteScore
-
Impact Factor
Volume 1, Issue 1, IECE Transactions on Advanced Computing and Systems
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Abdur Rasool
Abdur Rasool
University of Hawaii at Manoa, Honolulu, USA
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Advanced Computing and Systems, Volume 1, Issue 1, 2025: 5-18

Open Access | Research Article | 26 December 2024
Adaptive Fuzzy Controller for Chaos Suppression in Nonlinear Fractional Order Systems
1 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
2 Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea
* Corresponding Author: Inam Ullah, [email protected]
Received: 30 October 2024, Accepted: 17 December 2024, Published: 26 December 2024  
Abstract
This paper introduces a novel method for controlling a class of nonlinear non-affine systems with fractional-order dynamics, using an adaptive fuzzy technique. By incorporating a novel fractional update law in the design procedure, the controller can effectively suppress chaotic behaviour and smoothly track desired trajectories. The proposed method offers key advantages such as robustness against uncertainties, fast error convergence to the neighbourhood of zero, and satisfactory disturbance rejection performance. To demonstrate the capabilities of the proposed fractional controller, simulation results were conducted using Python on a fractional order Arneodo chaotic system. The results highlight the effectiveness and potential of the proposed method in controlling fractional-order systems.

Graphical Abstract
Adaptive Fuzzy Controller for Chaos Suppression in Nonlinear Fractional Order Systems

Keywords
fuzzy
adaptive
fractional
chaos
arneodo

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest. 

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Wang, Y. L., Jahanshahi, H., Bekiros, S., Bezzina, F., Chu, Y. M., & Aly, A. A. (2021). Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos, Solitons & Fractals, 146, 110881.
    [CrossRef]   [Google Scholar]
  2. Baleanu, D., Hasanabadi, M., Vaziri, A. M., & Jajarmi, A. (2023). A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach. Chaos, Solitons & Fractals, 167, 113078.
    [CrossRef]   [Google Scholar]
  3. Wu, M., Qin, L., & Wu, G. (2022). State of charge estimation of Power lithium-ion battery based on an Affine Iterative Adaptive Extended Kalman Filter. Journal of Energy Storage, 51, 104472.
    [CrossRef]   [Google Scholar]
  4. Rout, S., & Das, S. (2024). A Noise Covariance Regulated Robust Modified Adaptive Extended Kalman Filter for State of Charge Estimation of Lithium-Ion Battery. IEEE Access.
    [CrossRef]   [Google Scholar]
  5. Raj, A., & Aditya, K. (2024, June). Accurate State of Charge Estimation of Lithium-Ion cell using Unscented Kalman Filter. In 2024 IEEE 3rd International Conference on Electrical Power and Energy Systems (ICEPES) (pp. 1-7). IEEE.
    [CrossRef]   [Google Scholar]
  6. Wang, Y., & Zhao, G. (2023). A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy. Control Engineering Practice, 133, 105451.
    [CrossRef]   [Google Scholar]
  7. Benbouhenni, H., Bizon, N., Mosaad, M. I., Colak, I., Djilali, A. B., & Gasmi, H. (2024). Enhancement of the power quality of DFIG-based dual-rotor wind turbine systems using fractional order fuzzy controller. Expert Systems with Applications, 238, 121695.
    [CrossRef]   [Google Scholar]
  8. Sharafian, A., & Ghasemi, R. (2019). Fractional neural observer design for a class of nonlinear fractional chaotic systems. Neural Computing and Applications, 31, 1201-1213.
    [CrossRef]   [Google Scholar]
  9. Pham, V. T., Kingni, S. T., Volos, C., Jafari, S., & Kapitaniak, T. (2017). A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization. AEU-international Journal of Electronics and Communications, 78, 220-227.
    [CrossRef]   [Google Scholar]
  10. Hajipour, A., Hajipour, M., & Baleanu, D. (2018). On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system. Physica A: Statistical Mechanics and its Applications, 497, 139-153.
    [CrossRef]   [Google Scholar]
  11. Khanzadeh, A., & Pourgholi, M. (2016). Robust synchronization of fractional-order chaotic systems at a pre-specified time using sliding mode controller with time-varying switching surfaces. Chaos, Solitons & Fractals, 91, 69-77.
    [CrossRef]   [Google Scholar]
  12. Pashaei, S., & Badamchizadeh, M. (2016). A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. ISA transactions, 63, 39-48.
    [CrossRef]   [Google Scholar]
  13. Qiu, L., Yu, J., Monirul, I. M., Liu, C., & Wu, Z. (2023). Consensus control of semi-Markov jump topology multiple direct-drive motion system. IET Control Theory & Applications, 17(15), 2071-2084.
    [CrossRef]   [Google Scholar]
  14. Aghababa, M. P. (2013). Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. International Journal of Control, 86(10), 1744-1756.
    [CrossRef]   [Google Scholar]
  15. Wang, X. Y., & Song, J. M. (2009). Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 14(8), 3351-3357.
    [CrossRef]   [Google Scholar]
  16. Qiu, L., Wen, Y., Monirul, I. M., Najariyan, M., Pan, J., & Wu, Z. (2023). Networked $ H_\infty $ Control and Its Applications for a Multi-Station Cooperative Motion System. IEEE Transactions on Automation Science and Engineering, 21(4), 7107-7116.
    [CrossRef]   [Google Scholar]
  17. Navabi, M., Hashkavaei, N. S., & Reyhanoglu, M. (2023). Satellite attitude control using optimal adaptive and fuzzy controllers. Acta Astronautica, 204, 434-442.
    [CrossRef]   [Google Scholar]
  18. Lin, Y. H., Yu, C. M., Wu, I. C., & Wu, C. Y. (2023). The depth-keeping performance of autonomous underwater vehicle advancing in waves integrating the diving control system with the adaptive fuzzy controller. Ocean Engineering, 268, 113609.
    [CrossRef]   [Google Scholar]
  19. Ali, M., Kaur, K., Adnan, M., & Nisar, S. (2023). Adaptive fuzzy controller based early detection and prevention of asymmetrical faults in power systems. Control Engineering Practice, 130, 105380.
    [CrossRef]   [Google Scholar]
  20. Zangeneh, M., Aghajari, E., & Forouzanfar, M. (2022). A review on optimization of fuzzy controller parameters in robotic applications. IETE Journal of Research, 68(6), 4150-4159.
    [CrossRef]   [Google Scholar]
  21. Mendoza, A. M. E. R., & Yu, W. (2023). Fuzzy adaptive control law for trajectory tracking based on a fuzzy adaptive neural PID controller of a multi-rotor unmanned aerial vehicle. International Journal of Control, Automation and Systems, 21(2), 658-670.
    [CrossRef]   [Google Scholar]
  22. He, S., Xu, X., Xie, J., Wang, F., & Liu, Z. (2023). Adaptive control of dual-motor autonomous steering system for intelligent vehicles via Bi-LSTM and fuzzy methods. Control engineering practice, 130, 105362.
    [CrossRef]   [Google Scholar]
  23. Wei, J., Liu, Y. J., Chen, H., & Liu, L. (2023). Fuzzy adaptive control for vehicular platoons with constraints and unknown dead-zone input. IEEE Transactions on Intelligent Transportation Systems, 24(4), 4403-4412.
    [CrossRef]   [Google Scholar]
  24. Shen, Q., Shi, P., & Lim, C. P. (2024). Fuzzy adaptive fault-tolerant stability control against novel actuator faults and its application to mechanical systems. IEEE Transactions on Fuzzy Systems, 32(4), 2331-2340.
    [CrossRef]   [Google Scholar]
  25. Ha, S., Chen, L., Liu, H., & Zhang, S. (2022). Command filtered adaptive fuzzy control of fractional-order nonlinear systems. European Journal of Control, 63, 48-60.
    [CrossRef]   [Google Scholar]
  26. You, X., Shi, M., Guo, B., Zhu, Y., Lai, W., Dian, S., & Liu, K. (2022). Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance. Chaos, Solitons & Fractals, 161, 112393.
    [CrossRef]   [Google Scholar]
  27. Yang, W., Zheng, W. X., & Yu, W. (2022). Observer-based event-triggered adaptive fuzzy control for fractional-order time-varying delayed MIMO systems against actuator faults. IEEE Transactions on Fuzzy Systems, 30(12), 5445-5459.
    [CrossRef]   [Google Scholar]
  28. Shi, J., Cao, J., Liu, H., & Zhang, X. (2023). Compound adaptive fuzzy output feedback control for uncertain fractional-order nonlinear systems with fuzzy dead-zone input. International Journal of Fuzzy Systems, 25(6), 2439-2452.
    [CrossRef]   [Google Scholar]
  29. Liu, J., Wang, C., & Cai, X. (2021). Adaptive neural network finite-time tracking control for a class of high-order nonlinear multi-agent systems with powers of positive odd rational numbers and prescribed performance. Neurocomputing, 419, 157-167.
    [CrossRef]   [Google Scholar]
  30. Zhang, X., Zhang, W., Cao, J., & Liu, H. (2024). Observer-based command filtered adaptive fuzzy control for fractional-order MIMO nonlinear systems with unknown dead zones. Expert Systems with Applications, 124623.
    [CrossRef]   [Google Scholar]
  31. Betalo, M. L., Leng, S., Abishu, H. N., Dharejo, F. A., Seid, A. M., Erbad, A., ... & Guizani, M. (2023). Multi-agent deep reinforcement learning-based task scheduling and resource sharing for O-RAN-empowered multi-UAV-assisted wireless sensor networks. IEEE Transactions on Vehicular Technology, 73(7), 9247-9261.
    [CrossRef]   [Google Scholar]
  32. Betalo, M. L., Leng, S., Abishu, H. N., Seid, A. M., Fakirah, M., Erbad, A., & Guizani, M. (2024). Multi-agent drl-based energy harvesting for freshness of data in uav-assisted wireless sensor networks. IEEE Transactions on Network and Service Management, 21(6), 6527-6541.
    [CrossRef]   [Google Scholar]
  33. Derakhshannia, M., & Moosapour, S. S. (2022). Disturbance observer-based sliding mode control for consensus tracking of chaotic nonlinear multi-agent systems. Mathematics and Computers in Simulation, 194, 610-628.
    [CrossRef]   [Google Scholar]
  34. Wang, Q., Pan, Y., Cao, J., & Liu, H. (2023). Adaptive fuzzy echo state network control of fractional-order large-scale nonlinear systems with time-varying deferred constraints. IEEE Transactions on Fuzzy Systems, 32(2), 634-648.
    [CrossRef]   [Google Scholar]
  35. Delavari, H., Ghaderi, R., Ranjbar, A., & Momani, S. (2010). Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 15(4), 963-978.
    [CrossRef]   [Google Scholar]
  36. Zou, W., Mao, J., & Xiang, Z. (2024). Adaptive Fuzzy Finite-Time Sampled-Data Control for A Class of Fractional-Order Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 32(5), 3012-3025.
    [CrossRef]   [Google Scholar]
  37. Luchko, Y., & Yamamoto, M. (2020). The general fractional derivative and related fractional differential equations. Mathematics, 8(12), 2115.
    [CrossRef]   [Google Scholar]
  38. Sharafian, A., Sharifi, A., & Zhang, W. (2020). Different types of sliding mode controller for nonlinear fractional multi-Agent system. Chaos, Solitons & Fractals, 131, 109481.
    [CrossRef]   [Google Scholar]
  39. Ha, S., Chen, L., Liu, D., & Liu, H. (2024). Command Filtered Adaptive Fuzzy Control of Fractional-Order Nonlinear Systems With Unknown Dead Zones. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(6), 3705-3716.
    [CrossRef]   [Google Scholar]
  40. Pishro, A., Shahrokhi, M., & Sadeghi, H. (2022). Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions. Chaos, Solitons & Fractals, 157, 111930.
    [CrossRef]   [Google Scholar]
  41. Qiu, H., Liu, H., & Zhang, X. (2023). Composite adaptive fuzzy backstepping control of uncertain fractional-order nonlinear systems with quantized input. International Journal of Machine Learning and Cybernetics, 14(3), 833-847.
    [CrossRef]   [Google Scholar]
  42. Hao, Y., Fang, Z., Cao, J., & Liu, H. (2024). Consensus control of nonlinear fractional-order multi-agent systems with input saturation: a TS fuzzy method. IEEE Transactions on Fuzzy Systems.
    [CrossRef]   [Google Scholar]
  43. Song, S., Xing, L., Song, X., & Tejado, I. (2024). Event-Triggered Fuzzy Adaptive Predefined-Time Control for Fractional-Order Nonlinear Systems with Time-Varying Deferred Constraints and Its Application. Fractal and Fractional, 8(10), 613.
    [CrossRef]   [Google Scholar]
  44. Sharafian, A., Kanesan, J., Khairuddin, A. S. M., Ramanathan, A., Sharifi, A., & Bai, X. (2023). A novel approach to state estimation of HIV infection dynamics using fixed-time fractional order observer. Chaos, Solitons & Fractals, 177, 114192.
    [CrossRef]   [Google Scholar]
  45. Taheri, M., Chen, Y., Zhang, C., Berardehi, Z. R., Roohi, M., & Khooban, M. H. (2023). A finite-time sliding mode control technique for synchronization chaotic fractional-order laser systems with application on encryption of color images. Optik, 285, 170948.
    [CrossRef]   [Google Scholar]
  46. Zhan, Y., Sui, S., & Tong, S. (2021). Adaptive fuzzy decentralized dynamic surface control for fractional-order nonlinear large-scale systems. IEEE Transactions on Fuzzy Systems, 30(8), 3373-3383.
    [CrossRef]   [Google Scholar]
  47. Karami-Mollaee, A., Tirandaz, H., & Barambones, O. (2018). On dynamic sliding mode control of nonlinear fractional-order systems using sliding observer. Nonlinear Dynamics, 92, 1379-1393.
    [CrossRef]   [Google Scholar]
  48. Ghasemi, R., Sedighi, M., Ghasemi, M., & Sadat Ghazanfarpoor, B. (2023). Design of a Fuzzy Adaptive Voltage Controller for a Nonlinear Polymer Electrolyte Membrane Fuel Cell with an Unknown Dynamical System. Sustainability, 15(18), 13609.
    [CrossRef]   [Google Scholar]
  49. Lin, F., Xue, G., Qin, B., Li, S., & Liu, H. (2023). Event-triggered finite-time fuzzy control approach for fractional-order nonlinear chaotic systems with input delay. Chaos, Solitons & Fractals, 175, 114036.
    [CrossRef]   [Google Scholar]
  50. Wang, H., Xu, K., & Qiu, J. (2021). Event-triggered adaptive fuzzy fixed-time tracking control for a class of nonstrict-feedback nonlinear systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(7), 3058-3068.
    [CrossRef]   [Google Scholar]
  51. Liu, Y., Zhu, Q., & Zhao, N. (2021). Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints. Information Sciences, 562, 28-43.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Sharafian, A., Monirul, I. M., Mokarram, M. J., & Ullah, I. (2024). Adaptive Fuzzy Controller for Chaos Suppression in Nonlinear Fractional Order Systems. IECE Transactions on Advanced Computing and Systems, 1(1), 5–18. https://doi.org/10.62762/TACS.2024.318686

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 415
PDF Downloads: 94

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2024 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
IECE Transactions on Advanced Computing and Systems

IECE Transactions on Advanced Computing and Systems

ISSN: 3067-7157 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2024 Institute of Emerging and Computer Engineers Inc.