-
CiteScore
1.30
Impact Factor
Volume 2, Issue 2, IECE Transactions on Sensing, Communication, and Control
Volume 2, Issue 2, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Xuebo Jin
Xuebo Jin
Beijing Technology and Business University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Sensing, Communication, and Control, Volume 2, Issue 2, 2025: 106-121

Free to Read | Research Article | 19 May 2025
Optimizing Cloud Security with a Hybrid BiLSTM-BiGRU Model for Efficient Intrusion Detection
1 Department of Computer Science, Qurtuba University of Science \& Information Technology, Peshawar 25000, Pakistan
2 Department of Computer Science, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan
3 Department of Computer Science, University of Bari Aldo Moro, Bari (BA), Italy
4 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
5 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
6 Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, Poland
7 Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea
* Corresponding Authors: Asim Zeb, [email protected] ; Inam Ullah, [email protected]
Received: 02 December 2024, Accepted: 07 April 2025, Published: 19 May 2025  
Abstract
To address evolving security challenges in cloud computing, this study proposes a hybrid deep learning architecture integrating Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Units (BiGRU) for cloud intrusion detection. The BiLSTM-BiGRU model synergizes BiLSTM's long-term dependency modeling with BiGRU's efficient gating mechanisms, achieving a detection accuracy of 96.7% on the CIC-IDS 2018 dataset. It outperforms CNN-LSTM baselines by 2.2% accuracy, 3.3% precision, 3.6% recall, and 3.6% F1-score while maintaining 0.03% false positive rate. The architecture demonstrates operational efficiency through 20% reduced computational latency and 15% lower memory footprint compared to conventional models, enabled by residual memory preservation and parallel processing capabilities. Experimental results validate its dual competence in detecting both known attack patterns (98.1% recognition rate) and zero-day threats (93.4% anomaly identification), establishing a methodological framework for real-time cloud security services. This work advances hybrid deep learning applications in trusted computing environments through optimized temporal feature extraction and resource-aware threat detection.

Graphical Abstract
Optimizing Cloud Security with a Hybrid BiLSTM-BiGRU Model for Efficient Intrusion Detection

Keywords
cloud security
network intrusion detection
deep learning
BiLSTM-BiGRU
hybrid models
cybersecurity
cloud computing

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Almiani, M., AbuGhazleh, A., Al-Rahayfeh, A., Atiewi, S., & Razaque, A. (2020). Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory, 101, 102031.
    [CrossRef]   [Google Scholar]
  2. Narayan, D. (2022). Platform capitalism and cloud infrastructure: Theorizing a hyper-scalable computing regime. Environment and Planning A: Economy and Space, 54(5), 911-929.
    [Google Scholar]
  3. Yao, Z., Yang, C., Yong, P., Zhang, X., & Chen, F. (2023). A data-driven fault detection approach for Modular Reconfigurable Flying Array based on the Improved Deep Forest. Measurement, 206, 112217.
    [CrossRef]   [Google Scholar]
  4. Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M., Yilmaz, A. A., & Akin, E. (2023). A comprehensive review of cyber security vulnerabilities, threats, attacks, and solutions. Electronics, 12(6), 1333.
    [CrossRef]   [Google Scholar]
  5. Roopesh, M. (2024). CYBERSECURITY SOLUTIONS AND PRACTICES: FIREWALLS, INTRUSION DETECTION/PREVENTION, ENCRYPTION, MULTI-FACTOR AUTHENTICATION. Academic Journal on Business Administration, Innovation & Sustainability, 4(3), 37-52.
    [Google Scholar]
  6. Ullah, I., Noor, A., Nazir, S., Ali, F., Ghadi, Y. Y., & Aslam, N. (2024). Protecting IoT devices from security attacks using effective decision-making strategy of appropriate features. The Journal of Supercomputing, 80(5), 5870-5899.
    [Google Scholar]
  7. Srilatha, D., & Thillaiarasu, N. (2023). Implementation of Intrusion detection and prevention with Deep Learning in Cloud Computing. Journal of Information Technology Management, 15(Special Issue), 1-18.
    [Google Scholar]
  8. Moizuddin, M. D., & Jose, M. V. (2022). A bio-inspired hybrid deep learning model for network intrusion detection. Knowledge-based systems, 238, 107894.
    [CrossRef]   [Google Scholar]
  9. AlHaddad, U., Basuhail, A., Khemakhem, M., Eassa, F. E., & Jambi, K. (2023). Ensemble model based on hybrid deep learning for intrusion detection in smart grid networks. Sensors, 23(17), 7464.
    [CrossRef]   [Google Scholar]
  10. Haider, Z. A., Khan, F. M., Zafar, A., & Khan, I. U. (2024). Optimizing Machine Learning Classifiers for Credit Card Fraud Detection on Highly Imbalanced Datasets Using PCA and SMOTE Techniques. VAWKUM Transactions on Computer Sciences, 12(2), 28-49.
    [CrossRef]   [Google Scholar]
  11. Umer, M. A., Junejo, K. N., Jilani, M. T., & Mathur, A. P. (2022). Machine learning for intrusion detection in industrial control systems: Applications, challenges, and recommendations. International Journal of Critical Infrastructure Protection, 38, 100516.
    [CrossRef]   [Google Scholar]
  12. Kocher, G., & Kumar, G. (2021). Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges. Soft Computing, 25(15), 9731-9763.
    [CrossRef]   [Google Scholar]
  13. He, Y., Meng, G., Chen, K., Hu, X., & He, J. (2020). Towards security threats of deep learning systems: A survey. IEEE Transactions on Software Engineering, 48(5), 1743-1770.
    [CrossRef]   [Google Scholar]
  14. Chaganti, K. C. (2024). Advancing AI-Driven Threat Detection in IoT Ecosystems: Addressing Scalability, Resource Constraints, and Real-Time Adaptability. Authorea Preprints.
    [CrossRef]   [Google Scholar]
  15. Aljuaid, W. A. H., & Alshamrani, S. S. (2024). A deep learning approach for intrusion detection systems in cloud computing environments. Applied Sciences, 14(13), 5381.
    [CrossRef]   [Google Scholar]
  16. Hu, Z., Liu, G., Li, Y., & Zhuang, S. (2024). SAGB: self-attention with gate and BiGRU network for intrusion detection. Complex & Intelligent Systems, 10(6), 8467-8479.
    [CrossRef]   [Google Scholar]
  17. Yang, K., Wang, J., & Li, M. (2024). An improved intrusion detection method for IIoT using attention mechanisms, BiGRU, and Inception-CNN. Scientific Reports, 14(1), 19339.
    [CrossRef]   [Google Scholar]
  18. Einy, S., Oz, C., & Navaei, Y. D. (2021). The anomaly‐and signature‐based IDS for network security using hybrid inference systems. Mathematical Problems in Engineering, 2021(1), 6639714.
    [CrossRef]   [Google Scholar]
  19. Shihab, M. A., Aswad, S. A., Othman, R. N., & Ahmed, S. R. (2023, October). Advancements and challenges in networking technologies: A comprehensive survey. In 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-5). IEEE.
    [CrossRef]   [Google Scholar]
  20. Obidiagha, C. C., Rahouti, M., & Hayajneh, T. (2024). DeepImageDroid: A Hybrid Framework Leveraging Visual Transformers and Convolutional Neural Networks for Robust Android Malware Detection. IEEE Access, 12, 156285-156306.
    [CrossRef]   [Google Scholar]
  21. Alsoufi, M. A., Siraj, M. M., Ghaleb, F. A., Al-Razgan, M., Al-Asaly, M. S., Alfakih, T., & Saeed, F. (2024). Anomaly-based intrusion detection model using deep learning for IoT Networks. Computer Modeling in Engineering & Sciences, 141(1), 823-845.
    [Google Scholar]
  22. Deore, B., & Bhosale, S. (2022). Hybrid optimization enabled robust CNN-LSTM technique for network intrusion detection. IEEE Access, 10, 65611-65622.
    [CrossRef]   [Google Scholar]
  23. Said, R. B., Sabir, Z., & Askerzade, I. (2023). CNN-BiLSTM: A Hybrid Deep Learning Approach for Network Intrusion Detection System in Software Defined Networking with Hybrid Feature Selection. IEEE Access.
    [CrossRef]   [Google Scholar]
  24. Long, Z., Yan, H., Shen, G., Zhang, X., He, H., & Cheng, L. (2024). A Transformer-based network intrusion detection approach for cloud security. Journal of Cloud Computing, 13(1), 5.
    [Google Scholar]
  25. Patel, N., Patil, V., & Kshirsagar, D. (2024, August). Performance Analysis of Machine Learning Classifiers for Malware Detection. In 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1-5). IEEE.
    [CrossRef]   [Google Scholar]
  26. Kheddar, H. (2024). Transformers and large language models for efficient intrusion detection systems: A comprehensive survey. arXiv preprint arXiv:2408.07583.
    [Google Scholar]
  27. Wu, Z., Zhang, H., Wang, P., & Sun, Z. (2022). RTIDS: A robust transformer-based approach for intrusion detection system. IEEE Access, 10, 64375-64387.
    [CrossRef]   [Google Scholar]
  28. Aldallal, A. (2022). Toward efficient intrusion detection system using hybrid deep learning approach. Symmetry, 14(9), 1916.
    [CrossRef]   [Google Scholar]
  29. Al-kahtani, M. S., Mehmood, Z., Sadad, T., Zada, I., Ali, G., & ElAffendi, M. (2023). Intrusion detection in the Internet of Things using fusion of GRU-LSTM deep learning model. Intelligent Automation & Soft Computing, 37(2).
    [Google Scholar]
  30. Imrana, Y., Xiang, Y., Ali, L., Abdul-Rauf, Z., Hu, Y. C., Kadry, S., & Lim, S. (2022). χ 2-bidlstm: a feature driven intrusion detection system based on χ 2 statistical model and bidirectional lstm. Sensors, 22(5), 2018.
    [CrossRef]   [Google Scholar]
  31. Sun, Y., Lin, Z., Shi, B., Zhang, S., Ma, S., Jin, P., ... & Pei, D. (2025). Interpretable failure localization for microservice systems based on graph autoencoder. ACM Transactions on Software Engineering and Methodology, 34(2), 1-28.
    [CrossRef]   [Google Scholar]
  32. Said, R. B., Sabir, Z., & Askerzade, I. (2023). CNN-BiLSTM: A Hybrid Deep Learning Approach for Network Intrusion Detection System in Software Defined Networking with Hybrid Feature Selection. IEEE Access.
    [CrossRef]   [Google Scholar]
  33. Mazhar, T., Irfan, H. M., Khan, S., Haq, I., Ullah, I., Iqbal, M., & Hamam, H. (2023). Analysis of cyber security attacks and its solutions for the smart grid using machine learning and blockchain methods. Future Internet, 15(2), 83.
    [CrossRef]   [Google Scholar]
  34. Xu, B., Sun, L., Mao, X., Liu, C., & Ding, Z. (2024). Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling. Computers, Materials & Continua, 78(2).
    [CrossRef]   [Google Scholar]
  35. Alsaffar, A. M., Nouri-Baygi, M., & Zolbanin, H. M. (2024). Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning. Journal of Big Data, 11(1), 133.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Haider, Z. A., Zeb, A., Rahman, T., Khan, F. M., Khan, I. U., Sohail, Q., Bilal, H., Khan, M. A., & Ullah, I. (2025). Optimizing Cloud Security with a Hybrid BiLSTM-BiGRU Model for Efficient Intrusion Detection. IECE Transactions on Sensing, Communication, and Control, 2(2), 106–121. https://doi.org/10.62762/TSCC.2024.433246

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 101
PDF Downloads: 16

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Sensing, Communication, and Control

IECE Transactions on Sensing, Communication, and Control

ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.